| Acronym | pabex hix (alt.: thiddipcup) | 
| Name | partially bi-expanded hexateron, thiddip cupoliprism | 
| Circumradius | sqrt(17/12) = 1.190238 | 
| Face vector | 36, 108, 126, 66, 14 | 
| Confer | 
 | 
| External links |   | 
This scaliform polyteron can be obtained from hix by two consecutive partial Stott expansions within axial duoprismatic subsymmetry only. – The corresponding mono-expansion in the same sequence is pexhix.
The 4D shadow of this polyteron, i.e. its lacing edge size variation down such that it results in zero height and then considering its 4D hull only, would be known as triddep.
Incidence matrix according to Dynkin symbol
xx3xo xx3ox&#x   → height = 1/sqrt(3) = 0.577350
(thiddip || antipara thiddip)
o.3o. o.3o.    | 18  * | 1 1  2  2  0 0 0 | 1 2 2 1  2  2  2  1 0 0 0 0 | 2 1 1 2 2 1 2 1 1 0 0 0 | 1 2 1 1 1 0
.o3.o .o3.o    |  * 18 | 0 0  0  2  2 1 1 | 0 0 0 0  2  1  2  2 1 2 2 1 | 0 0 0 1 2 2 1 1 2 1 1 2 | 0 1 1 2 1 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x. .. .. ..    |  2  0 | 9 *  *  *  * * * | 1 2 0 0  2  0  0  0 0 0 0 0 | 2 1 0 2 2 1 0 0 0 0 0 0 | 1 2 1 1 0 0
.. x. .. ..    |  2  0 | * 9  *  *  * * * | 1 0 2 0  0  2  0  0 0 0 0 0 | 2 0 1 2 0 0 2 1 0 0 0 0 | 1 2 1 0 1 0
.. .. x. ..    |  2  0 | * * 18  *  * * * | 0 1 1 1  0  0  1  0 0 0 0 0 | 1 1 1 0 1 0 1 0 1 0 0 0 | 1 1 0 1 1 0
oo3oo oo3oo&#x |  1  1 | * *  * 36  * * * | 0 0 0 0  1  1  1  1 0 0 0 0 | 0 0 0 1 1 1 1 1 1 0 0 0 | 0 1 1 1 1 0
.x .. .. ..    |  0  2 | * *  *  * 18 * * | 0 0 0 0  1  0  0  0 1 1 1 0 | 0 0 0 1 1 1 0 0 0 1 1 1 | 0 1 1 1 0 1
.. .. .x ..    |  0  2 | * *  *  *  * 9 * | 0 0 0 0  0  0  2  0 0 2 0 1 | 0 0 0 0 2 0 1 0 2 1 0 2 | 0 1 0 2 1 1
.. .. .. .x    |  0  2 | * *  *  *  * * 9 | 0 0 0 0  0  0  0  2 0 0 2 1 | 0 0 0 0 0 2 0 1 2 0 1 2 | 0 0 1 2 1 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x.3x. .. ..    |  6  0 | 3 3  0  0  0 0 0 | 3 * * *  *  *  *  * * * * * | 2 0 0 2 0 0 0 0 0 0 0 0 | 1 2 1 0 0 0
x. .. x. ..    |  4  0 | 2 0  2  0  0 0 0 | * 9 * *  *  *  *  * * * * * | 1 1 0 0 1 0 0 0 0 0 0 0 | 1 1 0 1 0 0
.. x. x. ..    |  4  0 | 0 2  2  0  0 0 0 | * * 9 *  *  *  *  * * * * * | 1 0 1 0 0 0 1 0 0 0 0 0 | 1 1 0 0 1 0
.. .. x.3o.    |  3  0 | 0 0  3  0  0 0 0 | * * * 6  *  *  *  * * * * * | 0 1 1 0 0 0 0 0 1 0 0 0 | 1 0 0 1 1 0
xx .. .. ..&#x |  2  2 | 1 0  0  2  1 0 0 | * * * * 18  *  *  * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0
.. xo .. ..&#x |  2  1 | 0 1  0  2  0 0 0 | * * * *  * 18  *  * * * * * | 0 0 0 1 0 0 1 1 0 0 0 0 | 0 1 1 0 1 0
.. .. xx ..&#x |  2  2 | 0 0  1  2  0 1 0 | * * * *  *  * 18  * * * * * | 0 0 0 0 1 0 1 0 1 0 0 0 | 0 1 0 1 1 0
.. .. .. ox&#x |  1  2 | 0 0  0  2  0 0 1 | * * * *  *  *  * 18 * * * * | 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 1 1 1 0
.x3.o .. ..    |  0  3 | 0 0  0  0  3 0 0 | * * * *  *  *  *  * 6 * * * | 0 0 0 1 0 0 0 0 0 1 1 0 | 0 1 1 0 0 1
.x .. .x ..    |  0  4 | 0 0  0  0  2 2 0 | * * * *  *  *  *  * * 9 * * | 0 0 0 0 1 0 0 0 0 1 0 1 | 0 1 0 1 0 1
.x .. .. .x    |  0  4 | 0 0  0  0  2 0 2 | * * * *  *  *  *  * * * 9 * | 0 0 0 0 0 1 0 0 0 0 1 1 | 0 0 1 1 0 1
.. .. .x3.x    |  0  6 | 0 0  0  0  0 3 3 | * * * *  *  *  *  * * * * 3 | 0 0 0 0 0 0 0 0 2 0 0 2 | 0 0 0 2 1 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x.3x. x. ..    ♦ 12  0 | 6 6  6  0  0 0 0 | 2 3 3 0  0  0  0  0 0 0 0 0 | 3 * * * * * * * * * * * | 1 1 0 0 0 0
x. .. x.3o.    ♦  6  0 | 3 0  6  0  0 0 0 | 0 3 0 2  0  0  0  0 0 0 0 0 | * 3 * * * * * * * * * * | 1 0 0 1 0 0
.. x. x.3o.    ♦  6  0 | 0 3  6  0  0 0 0 | 0 0 3 2  0  0  0  0 0 0 0 0 | * * 3 * * * * * * * * * | 1 0 0 0 1 0
xx3xo .. ..&#x ♦  6  3 | 3 3  0  6  3 0 0 | 1 0 0 0  3  3  0  0 1 0 0 0 | * * * 6 * * * * * * * * | 0 1 1 0 0 0
xx .. xx ..&#x ♦  4  4 | 2 0  2  4  2 2 0 | 0 1 0 0  2  0  2  0 0 1 0 0 | * * * * 9 * * * * * * * | 0 1 0 1 0 0
xx .. .. ox&#x ♦  2  4 | 1 0  0  4  2 0 2 | 0 0 0 0  2  0  0  2 0 0 1 0 | * * * * * 9 * * * * * * | 0 0 1 1 0 0
.. xo xx ..&#x ♦  4  2 | 0 2  2  4  0 1 0 | 0 0 1 0  0  2  2  0 0 0 0 0 | * * * * * * 9 * * * * * | 0 1 0 0 1 0
.. xo .. ox&#x ♦  2  2 | 0 1  0  4  0 0 1 | 0 0 0 0  0  2  0  2 0 0 0 0 | * * * * * * * 9 * * * * | 0 0 1 0 1 0
.. .. xx3ox&#x ♦  3  6 | 0 0  3  6  0 3 3 | 0 0 0 1  0  0  3  3 0 0 0 1 | * * * * * * * * 6 * * * | 0 0 0 1 1 0
.x3.o .x ..    ♦  0  6 | 0 0  0  0  6 3 0 | 0 0 0 0  0  0  0  0 2 3 0 0 | * * * * * * * * * 3 * * | 0 1 0 0 0 1
.x3.o .. .x    ♦  0  6 | 0 0  0  0  6 0 3 | 0 0 0 0  0  0  0  0 2 0 3 0 | * * * * * * * * * * 3 * | 0 0 1 0 0 1
.x .. .x3.x    ♦  0 12 | 0 0  0  0  6 6 6 | 0 0 0 0  0  0  0  0 0 3 3 2 | * * * * * * * * * * * 3 | 0 0 0 1 0 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x.3x. x.3o.    ♦ 18  0 | 9 9 18  0  0 0 0 | 3 9 9 6  0  0  0  0 0 0 0 0 | 3 3 3 0 0 0 0 0 0 0 0 0 | 1 * * * * *
xx3xo xx ..&#x ♦ 12  6 | 6 6  6 12  6 3 0 | 2 3 3 0  6  6  6  0 2 3 0 0 | 1 0 0 2 3 0 3 0 0 1 0 0 | * 3 * * * *
xx3xo .. ox&#x ♦  6  6 | 3 3  0 12  6 0 3 | 1 0 0 0  6  6  0  6 2 0 3 0 | 0 0 0 2 0 3 0 3 0 0 1 0 | * * 3 * * *
xx .. xx3ox&#x ♦  6 12 | 3 0  6 12  6 6 6 | 0 3 0 2  6  0  6  6 0 3 3 2 | 0 1 0 0 3 3 0 0 2 0 0 1 | * * * 3 * *
.. xo xx3ox&#x ♦  6  6 | 0 3  6 12  0 3 3 | 0 0 3 2  0  6  6  6 0 0 0 1 | 0 0 1 0 0 0 3 3 2 0 0 0 | * * * * 3 *
.x3.o .x3.x    ♦  0 18 | 0 0  0  0 18 9 9 | 0 0 0 0  0  0  0  0 6 9 9 3 | 0 0 0 0 0 0 0 0 0 3 3 3 | * * * * * 1
or o.3o. o.3o. & | 36 | 1 1 2 2 | 1 2 2 1 4 3 | 2 1 1 3 2 3 1 | 1 3 2 -----------------+----+-------------+------------------+-----------------+------ x. .. .. .. & | 2 | 18 * * * | 1 2 0 0 2 0 | 2 1 0 2 2 1 0 | 1 3 1 .. x. .. .. & | 2 | * 18 * * | 1 0 2 0 0 1 | 2 0 1 2 0 2 1 | 1 2 2 .. .. x. .. & | 2 | * * 36 * | 0 1 1 1 1 0 | 1 1 1 1 1 1 0 | 1 2 1 oo3oo oo3oo&#x | 2 | * * * 36 | 0 0 0 0 2 2 | 0 0 0 2 1 2 1 | 0 2 2 -----------------+----+-------------+------------------+-----------------+------ x.3x. .. .. & | 6 | 3 3 0 0 | 6 * * * * * | 2 0 0 2 0 0 0 | 1 2 1 x. .. x. .. & | 4 | 2 0 2 0 | * 18 * * * * | 1 1 0 0 1 0 0 | 1 2 0 .. x. x. .. & | 4 | 0 2 2 0 | * * 18 * * * | 1 0 1 0 0 1 0 | 1 1 1 .. .. x.3o. & | 3 | 0 0 3 0 | * * * 12 * * | 0 1 1 1 0 0 0 | 1 1 1 xx .. .. ..&#x & | 4 | 1 0 1 2 | * * * * 36 * | 0 0 0 1 1 1 0 | 0 2 1 .. xo .. ..&#x & | 3 | 0 1 0 2 | * * * * * 36 | 0 0 0 1 0 1 1 | 0 1 2 -----------------+----+-------------+------------------+-----------------+------ x.3x. x. .. & ♦ 12 | 6 6 6 0 | 2 3 3 0 0 0 | 6 * * * * * * | 1 1 0 x. .. x.3o. & ♦ 6 | 3 0 6 0 | 0 3 0 2 0 0 | * 6 * * * * * | 1 1 0 .. x. x.3o. & ♦ 6 | 0 3 6 0 | 0 0 3 2 0 0 | * * 6 * * * * | 1 0 1 xx3xo .. ..&#x & ♦ 9 | 3 3 3 6 | 1 0 0 1 3 3 | * * * 12 * * * | 0 1 1 xx .. xx ..&#x ♦ 8 | 4 0 4 4 | 0 2 0 0 4 0 | * * * * 9 * * | 0 2 0 xx .. .. ox&#x & ♦ 6 | 1 2 2 4 | 0 0 1 0 2 2 | * * * * * 18 * | 0 1 1 .. xo .. ox&#x ♦ 4 | 0 2 0 4 | 0 0 0 0 0 4 | * * * * * * 9 | 0 0 2 -----------------+----+-------------+------------------+-----------------+------ x.3x. x.3o. & ♦ 18 | 9 9 18 0 | 3 9 9 6 0 0 | 3 3 3 0 0 0 0 | 2 * * xx3xo xx ..&#x & ♦ 18 | 9 6 12 12 | 2 6 3 2 12 6 | 1 1 0 2 3 3 0 | * 6 * xx3xo .. ox&#x & ♦ 12 | 3 6 6 12 | 1 0 3 2 6 12 | 0 0 1 2 0 3 3 | * * 6
| © 2004-2025 | top of page |