Acronym ... Name pirpop+5 2thah (?) Circumradius sqrt(7/5) = 1.183216 General of army srip Colonel of regiment srip Confer pirpop   2thah

This Grünbaumian polychoron can be seen as a union of pirpop plus the 5 pseudo-thah filled in as doubled up copies, in fact, these double-covers unite as 2thah, thereby letting the surface cross over at this former pseudo-cells. And indeed, the vertex figure is an asymmetric faceting of the vertex figure of srip. Therefore there can be blended 2 mirror symmetric such, and, correspondingly, the vertices of this polychoron coincide by pairs.

Incidence matrix according to Dynkin symbol

```x3x3o3/2x

. . .   . | 60 |  1  2  2 |  2  2  1  2  1 | 1  2  1 1
----------+----+----------+----------------+----------
x . .   . |  2 | 30  *  * |  2  2  0  0  0 | 1  2  1 0
. x .   . |  2 |  * 60  * |  1  0  1  1  0 | 1  1  0 1
. . .   x |  2 |  *  * 60 |  0  1  0  1  1 | 0  1  1 1
----------+----+----------+----------------+----------
x3x .   . |  6 |  3  3  0 | 20  *  *  *  * | 1  1  0 0
x . .   x |  4 |  2  0  2 |  * 30  *  *  * | 0  1  1 0
. x3o   . |  3 |  0  3  0 |  *  * 20  *  * | 1  0  0 1
. x .   x |  4 |  0  2  2 |  *  *  * 30  * | 0  1  0 1
. . o3/2x |  3 |  0  0  3 |  *  *  *  * 20 | 0  0  1 1
----------+----+----------+----------------+----------
x3x3o   . ♦ 12 |  6 12  0 |  4  0  4  0  0 | 5  *  * *
x3x .   x ♦ 12 |  6  6  6 |  2  3  0  3  0 | * 10  * *
x . o3/2x ♦  6 |  3  0  6 |  0  3  0  0  2 | *  * 10 *
. x3o3/2x ♦ 12 |  0 12 12 |  0  0  4  6  4 | *  *  * 5
```

```x3x3/2o3x

. .   . . | 60 |  1  2  2 |  2  2  1  2  1 | 1  2  1 1
----------+----+----------+----------------+----------
x .   . . |  2 | 30  *  * |  2  2  0  0  0 | 1  2  1 0
. x   . . |  2 |  * 60  * |  1  0  1  1  0 | 1  1  0 1
. .   . x |  2 |  *  * 60 |  0  1  0  1  1 | 0  1  1 1
----------+----+----------+----------------+----------
x3x   . . |  6 |  3  3  0 | 20  *  *  *  * | 1  1  0 0
x .   . x |  4 |  2  0  2 |  * 30  *  *  * | 0  1  1 0
. x3/2o . |  3 |  0  3  0 |  *  * 20  *  * | 1  0  0 1
. x   . x |  4 |  0  2  2 |  *  *  * 30  * | 0  1  0 1
. .   o3x |  3 |  0  0  3 |  *  *  *  * 20 | 0  0  1 1
----------+----+----------+----------------+----------
x3x3/2o . ♦ 12 |  6 12  0 |  4  0  4  0  0 | 5  *  * *
x3x   . x ♦ 12 |  6  6  6 |  2  3  0  3  0 | * 10  * *
x .   o3x ♦  6 |  3  0  6 |  0  3  0  0  2 | *  * 10 *
. x3/2o3x ♦ 12 |  0 12 12 |  0  0  4  6  4 | *  *  * 5
```