Acronym quitcope
Name quasitruncated-cuboctahedron prism
Cross sections
 ©
Circumradius sqrt[(7-3 sqrt(2))/2] = 1.174172
Coordinates (2 sqrt(2)-1, sqrt(2)-1, 1; 1)/2   & all permutations in all but last coord., all changes of sign
Dihedral angles
  • at {4} between cube and hip:   arccos(sqrt(2/3)) = 35.264390°
  • at {4} between cube and stop:   135°
  • at {4} between hip and stop:   arccos[1/sqrt(3)] = 54.735610°
  • at {4} between cube and quitco:   90°
  • at {6} between hip and quitco:   90°
  • at {8/3} between quitco and stop:   90°
Face vector 96, 192, 124, 28
Confer
uniform relative:
gichado  
blends:
girpdo  
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki  

As abstract polytope quitcope is isomorphic to gircope, thereby replacing octagrams by octagons, resp. replacing stop by op and quitco by girco.

If however all coordinates would have been permuted instead, then that vertex set would be the one of gichado. And indeed the blend of 4 quitcopes results in girpdo, a regiment member thereof.


Incidence matrix according to Dynkin symbol

x x3x4/3x

. . .   . | 96 |  1  1  1  1 |  1  1  1  1  1  1 | 1  1 1 1
----------+----+-------------+-------------------+---------
x . .   . |  2 | 48  *  *  * |  1  1  1  0  0  0 | 1  1 1 0
. x .   . |  2 |  * 48  *  * |  1  0  0  1  1  0 | 1  1 0 1
. . x   . |  2 |  *  * 48  * |  0  1  0  1  0  1 | 1  0 1 1
. . .   x |  2 |  *  *  * 48 |  0  0  1  0  1  1 | 0  1 1 1
----------+----+-------------+-------------------+---------
x x .   . |  4 |  2  2  0  0 | 24  *  *  *  *  * | 1  1 0 0
x . x   . |  4 |  2  0  2  0 |  * 24  *  *  *  * | 1  0 1 0
x . .   x |  4 |  2  0  0  2 |  *  * 24  *  *  * | 0  1 1 0
. x3x   . |  6 |  0  3  3  0 |  *  *  * 16  *  * | 1  0 0 1
. x .   x |  4 |  0  2  0  2 |  *  *  *  * 24  * | 0  1 0 1
. . x4/3x |  8 |  0  0  4  4 |  *  *  *  *  * 12 | 0  0 1 1
----------+----+-------------+-------------------+---------
x x3x   .  12 |  6  6  6  0 |  3  3  0  2  0  0 | 8  * * *
x x .   x   8 |  4  4  0  4 |  2  0  2  0  2  0 | * 12 * *
x . x4/3x  16 |  8  0  8  8 |  0  4  4  0  0  2 | *  * 6 *
. x3x4/3x  48 |  0 24 24 24 |  0  0  0  8 12  6 | *  * * 2

xx3xx4/3xx&#x   → height = 1
(quitco || quitco)

o.3o.4/3o.    | 48  * |  1  1  1  1  0  0  0 | 1  1 1  1  1  1 0  0 0 | 1 1  1 1 0
.o3.o4/3.o    |  * 48 |  0  0  0  1  1  1  1 | 0  0 0  1  1  1 1  1 1 | 0 1  1 1 1
--------------+-------+----------------------+------------------------+-----------
x. ..   ..    |  2  0 | 24  *  *  *  *  *  * | 1  1 0  1  0  0 0  0 0 | 1 1  1 0 0
.. x.   ..    |  2  0 |  * 24  *  *  *  *  * | 1  0 1  0  1  0 0  0 0 | 1 1  0 1 0
.. ..   x.    |  2  0 |  *  * 24  *  *  *  * | 0  1 1  0  0  1 0  0 0 | 1 0  1 1 0
oo3oo4/3oo&#x |  1  1 |  *  *  * 48  *  *  * | 0  0 0  1  1  1 0  0 0 | 0 1  1 1 0
.x ..   ..    |  0  2 |  *  *  *  * 24  *  * | 0  0 0  1  0  0 1  1 0 | 0 1  1 0 1
.. .x   ..    |  0  2 |  *  *  *  *  * 24  * | 0  0 0  0  1  0 1  0 1 | 0 1  0 1 1
.. ..   .x    |  0  2 |  *  *  *  *  *  * 24 | 0  0 0  0  0  1 0  1 1 | 0 0  1 1 1
--------------+-------+----------------------+------------------------+-----------
x.3x.   ..    |  6  0 |  3  3  0  0  0  0  0 | 8  * *  *  *  * *  * * | 1 1  0 0 0
x. ..   x.    |  4  0 |  2  0  2  0  0  0  0 | * 12 *  *  *  * *  * * | 1 0  1 0 0
.. x.4/3x.    |  8  0 |  0  4  4  0  0  0  0 | *  * 6  *  *  * *  * * | 1 0  0 1 0
xx ..   ..&#x |  2  2 |  1  0  0  2  1  0  0 | *  * * 24  *  * *  * * | 0 1  1 0 0
.. xx   ..&#x |  2  2 |  0  1  0  2  0  1  0 | *  * *  * 24  * *  * * | 0 1  0 1 0
.. ..   xx&#x |  2  2 |  0  0  1  2  0  0  1 | *  * *  *  * 24 *  * * | 0 0  1 1 0
.x3.x   ..    |  0  6 |  0  0  0  0  3  3  0 | *  * *  *  *  * 8  * * | 0 1  0 0 1
.x ..   .x    |  0  4 |  0  0  0  0  2  0  2 | *  * *  *  *  * * 12 * | 0 0  1 0 1
.. .x4/3.x    |  0  8 |  0  0  0  0  0  4  4 | *  * *  *  *  * *  * 6 | 0 0  0 1 1
--------------+-------+----------------------+------------------------+-----------
x.3x.4/3x.     48  0 | 24 24 24  0  0  0  0 | 8 12 6  0  0  0 0  0 0 | 1 *  * * *
xx3xx   ..&#x   6  6 |  3  3  0  6  3  3  0 | 1  0 0  3  3  0 1  0 0 | * 8  * * *
xx ..   xx&#x   4  4 |  2  0  2  4  2  0  2 | 0  1 0  2  0  2 0  1 0 | * * 12 * *
.. xx4/3xx&#x   8  8 |  0  4  4  8  0  4  4 | 0  0 1  0  4  4 0  0 1 | * *  * 6 *
.x3.x4/3.x      0 48 |  0  0  0  0 24 24 24 | 0  0 0  0  0  0 8 12 6 | * *  * * 1

© 2004-2025
top of page