Acronym | quitcope |
Name | quasitruncated-cuboctahedron prism |
Cross sections |
|
Circumradius | sqrt[(7-3 sqrt(2))/2] = 1.174172 |
Coordinates | (2 sqrt(2)-1, sqrt(2)-1, 1; 1)/2 & all permutations in all but last coord., all changes of sign |
Dihedral angles | |
Face vector | 96, 192, 124, 28 |
Confer |
|
External links |
![]() ![]() |
As abstract polytope quitcope is isomorphic to gircope, thereby replacing octagrams by octagons, resp. replacing stop by op and quitco by girco.
If however all coordinates would have been permuted instead, then that vertex set would be the one of gichado. And indeed the blend of 4 quitcopes results in girpdo, a regiment member thereof.
Incidence matrix according to Dynkin symbol
x x3x4/3x . . . . | 96 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 ----------+----+-------------+-------------------+--------- x . . . | 2 | 48 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 48 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 48 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 48 | 0 0 1 0 1 1 | 0 1 1 1 ----------+----+-------------+-------------------+--------- x x . . | 4 | 2 2 0 0 | 24 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 24 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 24 * * * | 0 1 1 0 . x3x . | 6 | 0 3 3 0 | * * * 16 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 24 * | 0 1 0 1 . . x4/3x | 8 | 0 0 4 4 | * * * * * 12 | 0 0 1 1 ----------+----+-------------+-------------------+--------- x x3x . ♦ 12 | 6 6 6 0 | 3 3 0 2 0 0 | 8 * * * x x . x ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 | * 12 * * x . x4/3x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 2 | * * 6 * . x3x4/3x ♦ 48 | 0 24 24 24 | 0 0 0 8 12 6 | * * * 2
xx3xx4/3xx&#x → height = 1
(quitco || quitco)
o.3o.4/3o. | 48 * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0
.o3.o4/3.o | * 48 | 0 0 0 1 1 1 1 | 0 0 0 1 1 1 1 1 1 | 0 1 1 1 1
--------------+-------+----------------------+------------------------+-----------
x. .. .. | 2 0 | 24 * * * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
.. x. .. | 2 0 | * 24 * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0
.. .. x. | 2 0 | * * 24 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0
oo3oo4/3oo&#x | 1 1 | * * * 48 * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.x .. .. | 0 2 | * * * * 24 * * | 0 0 0 1 0 0 1 1 0 | 0 1 1 0 1
.. .x .. | 0 2 | * * * * * 24 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1
.. .. .x | 0 2 | * * * * * * 24 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1
--------------+-------+----------------------+------------------------+-----------
x.3x. .. | 6 0 | 3 3 0 0 0 0 0 | 8 * * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 0 2 0 0 0 0 | * 12 * * * * * * * | 1 0 1 0 0
.. x.4/3x. | 8 0 | 0 4 4 0 0 0 0 | * * 6 * * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 0 2 1 0 0 | * * * 24 * * * * * | 0 1 1 0 0
.. xx ..&#x | 2 2 | 0 1 0 2 0 1 0 | * * * * 24 * * * * | 0 1 0 1 0
.. .. xx&#x | 2 2 | 0 0 1 2 0 0 1 | * * * * * 24 * * * | 0 0 1 1 0
.x3.x .. | 0 6 | 0 0 0 0 3 3 0 | * * * * * * 8 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 0 2 0 2 | * * * * * * * 12 * | 0 0 1 0 1
.. .x4/3.x | 0 8 | 0 0 0 0 0 4 4 | * * * * * * * * 6 | 0 0 0 1 1
--------------+-------+----------------------+------------------------+-----------
x.3x.4/3x. ♦ 48 0 | 24 24 24 0 0 0 0 | 8 12 6 0 0 0 0 0 0 | 1 * * * *
xx3xx ..&#x ♦ 6 6 | 3 3 0 6 3 3 0 | 1 0 0 3 3 0 1 0 0 | * 8 * * *
xx .. xx&#x ♦ 4 4 | 2 0 2 4 2 0 2 | 0 1 0 2 0 2 0 1 0 | * * 12 * *
.. xx4/3xx&#x ♦ 8 8 | 0 4 4 8 0 4 4 | 0 0 1 0 4 4 0 0 1 | * * * 6 *
.x3.x4/3.x ♦ 0 48 | 0 0 0 0 24 24 24 | 0 0 0 0 0 0 8 12 6 | * * * * 1
© 2004-2025 | top of page |