Acronym | raxh |
Name | rectified hexeractic pentacomb |
External links |
![]() |
Incidence matrix according to Dynkin symbol
o4x3o3o3o3o4o (N → ∞) . . . . . . . | 6N | 20 | 10 80 | 40 160 | 80 160 | 80 64 | 32 2 --------------+-----+-----+----------+----------+----------+--------+----- . x . . . . . | 2 | 60N | 1 8 | 8 24 | 24 32 | 32 16 | 16 1 --------------+-----+-----+----------+----------+----------+--------+----- o4x . . . . . | 4 | 4 | 15N * ♦ 8 0 | 24 0 | 32 0 | 16 0 . x3o . . . . | 3 | 3 | * 160N | 1 6 | 6 12 | 12 8 | 8 1 --------------+-----+-----+----------+----------+----------+--------+----- o4x3o . . . . ♦ 12 | 24 | 6 8 | 20N * ♦ 6 0 | 12 0 | 8 0 . x3o3o . . . ♦ 4 | 6 | 0 4 | * 240N | 1 4 | 4 4 | 4 1 --------------+-----+-----+----------+----------+----------+--------+----- o4x3o3o . . . ♦ 32 | 96 | 24 64 | 8 16 | 15N * | 4 0 | 4 0 . x3o3o3o . . ♦ 5 | 10 | 0 10 | 0 5 | * 192N | 1 2 | 2 1 --------------+-----+-----+----------+----------+----------+--------+----- o4x3o3o3o . . ♦ 80 | 320 | 80 320 | 40 160 | 10 32 | 6N * | 2 0 . x3o3o3o3o . ♦ 6 | 15 | 0 20 | 0 15 | 0 6 | * 64N | 1 1 --------------+-----+-----+----------+----------+----------+--------+----- o4x3o3o3o3o . ♦ 192 | 960 | 240 1280 | 160 960 | 60 384 | 12 64 | N * . x3o3o3o3o4o ♦ 12 | 60 | 0 160 | 0 240 | 0 192 | 0 64 | * N
o 3 \ o---o---o---x---o 3 / 3 3 3 4 o
o3o3o *b3o3o3x4o (N → ∞) . . . . . . . | 12N | 20 | 80 10 | 160 40 | 160 80 | 32 32 80 | 2 16 16 -----------------+-----+------+----------+----------+----------+-------------+--------- . . . . . x . | 2 | 120N | 8 1 | 24 8 | 32 24 | 8 8 32 | 1 8 8 -----------------+-----+------+----------+----------+----------+-------------+--------- . . . . o3x . | 3 | 3 | 320N * | 6 1 | 12 6 | 4 4 12 | 1 4 4 . . . . . x4o | 4 | 4 | * 30N ♦ 0 8 | 0 24 | 0 0 32 | 0 8 8 -----------------+-----+------+----------+----------+----------+-------------+--------- . . . o3o3x . ♦ 4 | 6 | 4 0 | 480N * | 4 1 | 2 2 4 | 1 2 2 . . . . o3x4o ♦ 12 | 24 | 8 6 | * 40N ♦ 0 6 | 0 0 12 | 0 4 4 -----------------+-----+------+----------+----------+----------+-------------+--------- . o . *b3o3o3x . ♦ 5 | 10 | 10 0 | 5 0 | 384N * | 1 1 1 | 1 1 1 . . . o3o3x4o ♦ 32 | 96 | 64 24 | 16 8 | * 30N | 0 0 4 | 0 2 2 -----------------+-----+------+----------+----------+----------+-------------+--------- o3o . *b3o3o3x . ♦ 6 | 15 | 20 0 | 15 0 | 6 0 | 64N * * | 1 1 0 . o3o *b3o3o3x . ♦ 6 | 15 | 20 0 | 15 0 | 6 0 | * 64N * | 1 0 1 . o . *b3o3o3x4o ♦ 80 | 320 | 320 80 | 160 40 | 32 10 | * * 12N | 0 1 1 -----------------+-----+------+----------+----------+----------+-------------+--------- o3o3o *b3o3o3x . ♦ 12 | 60 | 160 0 | 240 0 | 192 0 | 32 32 0 | 2N * * o3o . *b3o3o3x4o ♦ 192 | 960 | 1280 240 | 960 160 | 384 60 | 64 0 12 | * N * . o3o *b3o3o3x4o ♦ 192 | 960 | 1280 240 | 960 160 | 384 60 | 0 64 12 | * * N
x 3 \ o---o---o---o---o 3 / 3 3 3 4 x
x3o3x *b3o3o3o4o (N → ∞) . . . . . . . | 12N | 10 10 | 40 10 40 | 40 80 80 | 80 80 80 | 80 32 32 | 32 1 1 -----------------+-----+---------+---------------+---------------+---------------+-------------+------- x . . . . . . | 2 | 60N * | 8 1 0 | 8 24 0 | 24 32 0 | 32 16 0 | 16 1 0 . . x . . . . | 2 | * 60N | 0 1 8 | 8 0 24 | 24 0 32 | 32 0 16 | 16 0 1 -----------------+-----+---------+---------------+---------------+---------------+-------------+------- x3o . . . . . | 3 | 3 0 | 160N * * | 1 6 0 | 6 12 0 | 12 8 0 | 8 1 0 x . x . . . . | 4 | 2 2 | * 30N * ♦ 8 0 0 | 24 0 0 | 32 0 0 | 16 0 0 . o3x . . . . | 3 | 0 3 | * * 160N | 1 0 6 | 6 0 12 | 12 0 8 | 8 0 1 -----------------+-----+---------+---------------+---------------+---------------+-------------+------- x3o3x . . . . ♦ 12 | 12 12 | 4 6 4 | 40N * * ♦ 6 0 0 | 12 0 0 | 8 0 0 x3o . *b3o . . . ♦ 4 | 6 0 | 4 0 0 | * 240N * | 1 4 0 | 4 4 0 | 4 1 0 . o3x *b3o . . . ♦ 4 | 0 6 | 0 0 4 | * * 240N | 1 0 4 | 4 0 4 | 4 0 1 -----------------+-----+---------+---------------+---------------+---------------+-------------+------- x3o3x *b3o . . . ♦ 32 | 48 48 | 32 24 32 | 8 8 8 | 30N * * | 4 0 0 | 4 0 0 x3o . *b3o3o . . ♦ 5 | 10 0 | 10 0 0 | 0 5 0 | * 192N * | 1 2 0 | 2 1 0 . o3x *b3o3o . . ♦ 5 | 0 10 | 0 0 10 | 0 0 5 | * * 192N | 1 0 2 | 2 0 1 -----------------+-----+---------+---------------+---------------+---------------+-------------+------- x3o3x *b3o3o . . ♦ 80 | 160 160 | 160 80 160 | 40 80 80 | 10 16 16 | 12N * * | 2 0 0 x3o . *b3o3o3o . ♦ 6 | 15 0 | 20 0 0 | 0 15 0 | 0 6 0 | * 64N * | 1 1 0 .o3x *b3o3o3o . ♦ 6 | 0 15 | 0 0 20 | 0 0 15 | 0 0 6 | * * 64N | 1 0 1 -----------------+-----+---------+---------------+---------------+---------------+-------------+------- x3o3x *b3o3o3o . ♦ 192 | 480 480 | 640 240 640 | 160 480 480 | 60 192 192 | 12 32 32 | 2N * * x3o . *b3o3o3o4o ♦ 12 | 60 0 | 160 0 0 | 0 240 0 | 0 192 0 | 0 64 0 | * N * . o3x *b3o3o3o4o ♦ 12 | 0 60 | 0 0 160 | 0 0 240 | 0 0 192 | 0 0 64 | * * N
x o 3 \ / 3 o---o---o 3 / 3 3 \ 3 x o
x3o3x o3o3o *b3o3*e (N → ∞) . . . . . . . | 12N | 10 10 | 40 10 40 | 40 80 80 | 80 80 80 | 80 16 16 16 16 | 16 16 1 1 --------------------+-----+---------+---------------+---------------+---------------+---------------------+---------- x . . . . . . | 2 | 60N * | 8 1 0 | 8 24 0 | 24 32 0 | 32 8 8 0 0 | 8 8 1 0 . . x . . . . | 2 | * 60N | 0 1 8 | 8 0 24 | 24 0 32 | 32 0 0 8 8 | 8 8 0 1 --------------------+-----+---------+---------------+---------------+---------------+---------------------+---------- x3o . . . . . | 3 | 3 0 | 160N * * | 1 6 0 | 6 12 0 | 12 4 4 0 0 | 4 4 1 0 x . x . . . . | 4 | 2 2 | * 30N * ♦ 8 0 0 | 24 0 0 | 32 0 0 0 0 | 8 8 0 0 . o3x . . . . | 3 | 0 3 | * * 160N | 1 0 6 | 6 0 12 | 12 0 0 4 4 | 4 4 0 1 --------------------+-----+---------+---------------+---------------+---------------+---------------------+---------- x3o3x . . . . ♦ 12 | 12 12 | 4 6 4 | 40N * * ♦ 6 0 0 | 12 0 0 0 0 | 4 4 0 0 x3o . . . . *b3o ♦ 4 | 6 0 | 4 0 0 | * 240N * | 1 4 0 | 4 2 2 0 0 | 2 2 1 0 . o3x . . . *b3o ♦ 4 | 0 6 | 0 0 4 | * * 240N | 1 0 4 | 4 0 0 2 2 | 2 2 0 1 --------------------+-----+---------+---------------+---------------+---------------+---------------------+---------- x3o3x . . . *b3o ♦ 32 | 48 48 | 32 24 32 | 8 8 8 | 30N * * | 4 0 0 0 0 | 2 2 0 0 x3o . . o . *b3o3*e ♦ 5 | 10 0 | 10 0 0 | 0 5 0 | * 192N * | 1 1 1 0 0 | 1 1 1 0 . o3x . o . *b3o3*e ♦ 5 | 0 10 | 0 0 10 | 0 0 5 | * * 192N | 1 0 0 1 1 | 1 1 0 1 --------------------+-----+---------+---------------+---------------+---------------+---------------------+---------- x3o3x . o . *b3o3*e ♦ 80 | 160 160 | 160 80 160 | 40 80 80 | 10 16 16 | 12N * * * * | 1 1 0 0 x3o . o3o . *b3o3*e ♦ 6 | 15 0 | 20 0 0 | 0 15 0 | 0 6 0 | * 32N * * * | 1 0 1 0 x3o . . o3o *b3o3*e ♦ 6 | 15 0 | 20 0 0 | 0 15 0 | 0 6 0 | * * 32N * * | 0 1 1 0 . o3x o3o . *b3o3*e ♦ 6 | 0 15 | 0 0 20 | 0 0 15 | 0 0 6 | * * * 32N * | 1 0 0 1 . o3x . o3o *b3o3*e ♦ 6 | 0 15 | 0 0 20 | 0 0 15 | 0 0 6 | * * * * 32N | 0 1 0 1 --------------------+-----+---------+---------------+---------------+---------------+---------------------+---------- x3o3x o3o . *b3o3*e ♦ 192 | 480 480 | 640 240 640 | 160 480 480 | 60 192 192 | 12 32 0 32 0 | N * * * x3o3x . o3o *b3o3*e ♦ 192 | 480 480 | 640 240 640 | 160 480 480 | 60 192 192 | 12 0 32 0 32 | * N * * x3o . o3o3o *b3o3*e ♦ 12 | 60 0 | 160 0 0 | 0 240 0 | 0 192 0 | 0 32 32 0 0 | * * N * . o3x o3o3o *b3o3*e ♦ 12 | 0 60 | 0 0 160 | 0 0 240 | 0 0 192 | 0 0 0 32 32 | * * * N
© 2004-2025 | top of page |