| Acronym | hex, K-4.2 (alt: octit, trapt) | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Name | 
hexadecachoron, tetracross (β4), orthoplex, hemitesseract, hemioctachoron, 16-cell, aeroter(id), tetrahedral antiprism, vertex figure of tac, (line-)octahedral tegum, (line-)trigonal-antirprismatic tegum, Gosset polytope 11,1, 8-3-stepprism, lattice C4 contact polytope (span of its small roots), equatorial cross-section of vertex-first tac  | ||||||||||||||||||||||||||||||||||||||||||||||||||
  | |||||||||||||||||||||||||||||||||||||||||||||||||||
| Segmentochoron display / VRML | 
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Cross sections | 
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Circumradius | 1/sqrt(2) = 0.707107 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Edge radius | 1/2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Face radius | 1/sqrt(6) = 0.408248 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Inradius | 1/sqrt(8) = 0.353553 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Vertex figure | 
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Vertex layers | 
	
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
Lace city in approx. ASCII-art  | 
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
    x3o    
o3o     o3o
    o3x    
 | |||||||||||||||||||||||||||||||||||||||||||||||||||
  | |||||||||||||||||||||||||||||||||||||||||||||||||||
| Coordinates | 
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Volume | 1/6 = 0.166667 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Surface | 4 sqrt(2)/3 = 1.885618 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Rel. Roundness | 3 π2/64 = 46.263771 % | ||||||||||||||||||||||||||||||||||||||||||||||||||
| General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Colonel of regiment | 
(is itself locally convex
– uniform polychoral members: 
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Dual | tes | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Dihedral angles | |||||||||||||||||||||||||||||||||||||||||||||||||||
| Face vector | 8, 24, 32, 16 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| Confer | 
	
  | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
External links  | 
 
  
 
  
 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Considering its cells, i.e. the tets, more as digonal antiprisms, then always 4 build a closed ring within edgewise connection each, 4 of witch thus are swirling around each other.
This polychoron is not only obtained as the vertex alternated hemiation of the tesseract, the later could be re-obtained from this one by the extension of either its even or its odd facets. In fact it happens to be the kernel of any 2 tesseracts of the great icositetrachoron.
Note that hex can be thought of as the external blend of 4 squascs. Further, the overlay of 2 such fully perpendicular decompositions would amount to the degenerate segmentoteron xo4oo ox4oo&#x.
The number of ways to color the hexadecachoron with different colors per cell is 16!/192 = 108 972 864 000. – This is because the color group is the permutation group of 16 elements and has size 16!, while the order of the pure rotational tesseractic group is 192. (The reflectional tesseractic group would have twice as many, i.e. 384 elements.)
When considered as tet antiprism, the analysis of the being used lacing facets shows that the half-height section results in a half-edge sized co.
Being the dual of tes and considering that one's coordinates, it is apparent that this solid is nothing but a hyperball wrt. the norm |x|+|y|+|z|+|w|.
Incidence matrix according to Dynkin symbol
x3o3o4o . . . . | 8 ♦ 6 | 12 | 8 --------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 --------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 --------+---+----+----+--- x3o3o . ♦ 4 | 6 | 4 | 16 snubbed forms: β3o3o4o
x3o3o4/3o . . . . | 8 ♦ 6 | 12 | 8 ----------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ----------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 ----------+---+----+----+--- x3o3o . ♦ 4 | 6 | 4 | 16
x3o3/2o4o . . . . | 8 ♦ 6 | 12 | 8 ----------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ----------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 ----------+---+----+----+--- x3o3/2o . ♦ 4 | 6 | 4 | 16
x3o3/2o4/3o . . . . | 8 ♦ 6 | 12 | 8 ------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ------------+---+----+----+--- x3o . . | 3 | 3 | 32 | 2 ------------+---+----+----+--- x3o3/2o . ♦ 4 | 6 | 4 | 16
x3/2o3o4o . . . . | 8 ♦ 6 | 12 | 8 ----------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ----------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 ----------+---+----+----+--- x3/2o3o . ♦ 4 | 6 | 4 | 16
x3/2o3o4/3o . . . . | 8 ♦ 6 | 12 | 8 ------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ------------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 ------------+---+----+----+--- x3/2o3o . ♦ 4 | 6 | 4 | 16
x3/2o3/2o4o . . . . | 8 ♦ 6 | 12 | 8 ------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 ------------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 ------------+---+----+----+--- x3/2o3/2o . ♦ 4 | 6 | 4 | 16
x3/2o3/2o4/3o . . . . | 8 ♦ 6 | 12 | 8 --------------+---+----+----+--- x . . . | 2 | 24 | 4 | 4 --------------+---+----+----+--- x3/2o . . | 3 | 3 | 32 | 2 --------------+---+----+----+--- x3/2o3/2o . ♦ 4 | 6 | 4 | 16
        o 
       / 3
  x---o   
    3  \ 3
        o 
x3o3o *b3o . . . . | 8 ♦ 6 | 12 | 4 4 -----------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -----------+---+----+----+---- x3o . . | 3 | 3 | 32 | 1 1 -----------+---+----+----+---- x3o3o . ♦ 4 | 6 | 4 | 8 * x3o . *b3o ♦ 4 | 6 | 4 | * 8 snubbed forms: β3o3o *b3o
        o   
       / 3  
  x---o     
    3  \ 3/2
        o   
x3o3o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 -------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -------------+---+----+----+---- x3o . . | 3 | 3 | 32 | 1 1 -------------+---+----+----+---- x3o3o . ♦ 4 | 6 | 4 | 8 * x3o . *b3/2o ♦ 4 | 6 | 4 | * 8
        o   
       / 3/2
  x---o     
    3  \ 3/2
        o   
x3o3/2o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 ---------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 ---------------+---+----+----+---- x3o . . | 3 | 3 | 32 | 1 1 ---------------+---+----+----+---- x3o3/2o . ♦ 4 | 6 | 4 | 8 * x3o . *b3/2o ♦ 4 | 6 | 4 | * 8
        o 
       / 3
  x---o   
   3/2 \ 3
        o 
x3/2o3o *b3o . . . . | 8 ♦ 6 | 12 | 4 4 -------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -------------+---+----+----+---- x3/2o . . | 3 | 3 | 32 | 1 1 -------------+---+----+----+---- x3/2o3o . ♦ 4 | 6 | 4 | 8 * x3/2o . *b3o ♦ 4 | 6 | 4 | * 8
        o   
       / 3  
  x---o     
   3/2 \ 3/2
        o   
x3/2o3o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 ---------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 ---------------+---+----+----+---- x3/2o . . | 3 | 3 | 32 | 1 1 ---------------+---+----+----+---- x3/2o3o . ♦ 4 | 6 | 4 | 8 * x3/2o . *b3/2o ♦ 4 | 6 | 4 | * 8
        o   
       / 3/2
  x---o     
   3/2 \ 3/2
        o   
x3/2o3/2o *b3/2o . . . . | 8 ♦ 6 | 12 | 4 4 -----------------+---+----+----+---- x . . . | 2 | 24 | 4 | 2 2 -----------------+---+----+----+---- x3/2o . . | 3 | 3 | 32 | 1 1 -----------------+---+----+----+---- x3/2o3/2o . ♦ 4 | 6 | 4 | 8 * x3/2o . *b3/2o ♦ 4 | 6 | 4 | * 8
s4o3o3o
demi( . . . . ) | 8 ♦  6 | 12 | 4 4
----------------+---+----+----+----
      s4o . .   ♦ 2 | 24 |  4 | 2 2
----------------+---+----+----+----
sefa( s4o3o . ) | 3 |  3 | 32 | 1 1
----------------+---+----+----+----
      s4o3o .   ♦ 4 |  6 |  4 | 8 *
sefa( s4o3o3o ) ♦ 4 |  6 |  4 | * 8
starting figure: x4o3o3o
s2s4o3o
demi( . . . . ) | 8 ♦  3  3 |  9 3 | 3 1 4
----------------+---+-------+------+------
      s2s . .   ♦ 2 | 12  * |  4 0 | 2 0 2
      . s4o .   ♦ 2 |  * 12 |  2 2 | 1 1 2
----------------+---+-------+------+------
sefa( s2s4o . ) | 3 |  2  1 | 24 * | 1 0 1
sefa( . s4o3o ) | 3 |  0  3 |  * 8 | 0 1 1
----------------+---+-------+------+------
      s2s4o .   ♦ 4 |  4  2 |  4 0 | 6 * *
      . s4o3o   ♦ 4 |  0  6 |  0 4 | * 2 *
sefa( s2s4o3o ) ♦ 4 |  3  3 |  3 1 | * * 8
starting figure: x x4o3o
s4o2s4o
demi( . . . . ) | 8 ♦ 1  4 1 |  6  6 | 2 2 4
----------------+---+--------+-------+------
      s4o . .   ♦ 2 | 4  * * |  4  0 | 2 0 2
      s 2 s .   ♦ 2 | * 16 * |  2  2 | 1 1 2
      . . s4o   ♦ 2 | *  * 4 |  0  4 | 0 2 2
----------------+---+--------+-------+------
sefa( s4o2s . ) | 3 | 1  2 0 | 16  * | 1 0 1
sefa( s 2 s4o ) | 3 | 0  2 1 |  * 16 | 0 1 1
----------------+---+--------+-------+------
      s4o2s .   ♦ 4 | 2  4 0 |  4  0 | 4 * *
      s 2 s4o   ♦ 4 | 0  4 2 |  0  4 | * 4 *
sefa( s4o2s4o ) ♦ 4 | 1  4 1 |  2  2 | * * 8
or
demi( . . . . )    | 8 ♦ 2  4 | 12 | 4 4
-------------------+---+------+----+----
      s4o . .    & ♦ 2 | 8  * |  4 | 2 2
      s 2 s .      ♦ 2 | * 16 |  4 | 2 2
-------------------+---+------+----+----
sefa( s4o2s . )  & | 3 | 1  2 | 32 | 1 1
-------------------+---+------+----+----
      s4o2s .    & ♦ 4 | 2  4 |  4 | 8 *
sefa( s4o2s4o )    ♦ 4 | 2  4 |  4 | * 8
starting figure: x4o x4o
s2s2s4o
demi( . . . . ) | 8 ♦ 1 2 2 1 |  6 3 3 | 2 1 1 4
----------------+---+---------+--------+--------
      s2s . .   ♦ 2 | 4 * * * |  4 0 0 | 2 0 0 2
      s 2 s .   ♦ 2 | * 8 * * |  2 2 0 | 1 1 0 2
      . s2s .   ♦ 2 | * * 8 * |  2 0 2 | 1 0 1 2
      . . s4o   ♦ 2 | * * * 4 |  0 2 2 | 0 1 1 2
----------------+---+---------+--------+--------
sefa( s2s2s . ) | 3 | 1 1 1 0 | 16 * * | 1 0 0 1
sefa( s 2 s4o ) | 3 | 0 2 0 1 |  * 8 * | 0 1 0 1
sefa( . s2s4o ) | 3 | 0 0 2 1 |  * * 8 | 0 0 1 1
----------------+---+---------+--------+--------
      s2s2s .   ♦ 4 | 2 2 2 0 |  4 0 0 | 4 * * *
      s 2 s4o   ♦ 4 | 0 4 0 2 |  0 4 0 | * 2 * *
      . s2s4o   ♦ 4 | 0 0 4 2 |  0 0 4 | * * 2 *
sefa( s2s2s4o ) ♦ 4 | 1 2 2 1 |  2 1 1 | * * * 8
starting figure: x x x4o
s2s2s2s
demi( . . . .  ) | 8 ♦ 1 1 1 1 1 1 | 3 3 3 3 | 1 1 1 1 4
-----------------+---+-------------+---------+----------
      s2s . .    ♦ 2 | 4 * * * * * | 2 2 0 0 | 1 1 0 0 2
      s 2 s .    ♦ 2 | * 4 * * * * | 2 0 2 0 | 1 0 1 0 2
      s . . s2*a ♦ 2 | * * 4 * * * | 0 2 2 0 | 0 1 1 0 2
      . s2s .    ♦ 2 | * * * 4 * * | 2 0 0 2 | 1 0 0 1 2
      . s 2 s    ♦ 2 | * * * * 4 * | 0 2 0 2 | 0 1 0 1 2
      . . s2s    ♦ 2 | * * * * * 4 | 0 0 2 2 | 0 0 1 1 2
-----------------+---+-------------+---------+----------
sefa( s2s2s .  ) | 3 | 1 1 0 1 0 0 | 8 * * * | 1 0 0 0 1
sefa( s2s 2 s  ) | 3 | 1 0 1 0 1 0 | * 8 * * | 0 1 0 0 1
sefa( s 2 s2s  ) | 3 | 0 1 1 0 0 1 | * * 8 * | 0 0 1 0 1
sefa( . s2s2s  ) | 3 | 0 0 0 1 1 1 | * * * 8 | 0 0 0 1 1
-----------------+---+-------------+---------+----------
      s2s2s .    ♦ 4 | 2 2 0 2 0 0 | 4 0 0 0 | 2 * * * *
      s2s 2 s    ♦ 4 | 2 0 2 0 2 0 | 0 4 0 0 | * 2 * * *
      s 2 s2s    ♦ 4 | 0 2 2 0 0 2 | 0 0 4 0 | * * 2 * *
      . s2s2s    ♦ 4 | 0 0 0 2 2 2 | 0 0 0 4 | * * * 2 *
sefa( s2s2s2s  ) ♦ 4 | 1 1 1 1 1 1 | 1 1 1 1 | * * * * 8
starting figure: x x x x
xo3oo3ox&#x   → height = 1/sqrt(2) = 0.707107
(tet || dual tet)
o.3o.3o.    | 4 * ♦ 3  3 0 | 3  6  3 0 | 1 3 3 1 0
.o3.o3.o    | * 4 ♦ 0  3 3 | 0  3  6 3 | 0 1 3 3 1
------------+-----+--------+-----------+----------
x. .. ..    | 2 0 | 6  * * | 2  2  0 0 | 1 2 1 0 0
oo3oo3oo&#x | 1 1 | * 12 * | 0  2  2 0 | 0 1 2 1 0
.. .. .x    | 0 2 | *  * 6 | 0  0  2 2 | 0 0 1 2 1
------------+-----+--------+-----------+----------
x.3o. ..    | 3 0 | 3  0 0 | 4  *  * * | 1 1 0 0 0
xo .. ..&#x | 2 1 | 1  2 0 | * 12  * * | 0 1 1 0 0
.. .. ox&#x | 1 2 | 0  2 1 | *  * 12 * | 0 0 1 1 0
.. .o3.x    | 0 3 | 0  0 3 | *  *  * 4 | 0 0 0 1 1
------------+-----+--------+-----------+----------
x.3o.3o.    ♦ 4 0 | 6  0 0 | 4  0  0 0 | 1 * * * *
xo3oo ..&#x ♦ 3 1 | 3  3 0 | 1  3  0 0 | * 4 * * *
xo .. ox&#x ♦ 2 2 | 1  4 1 | 0  2  2 0 | * * 6 * *
.. oo3ox&#x ♦ 1 3 | 0  3 3 | 0  0  3 1 | * * * 4 *
.o3.o3.x    ♦ 0 4 | 0  0 6 | 0  0  0 4 | * * * * 1
or o.3o.3o. & | 8 ♦ 3 3 | 3 9 | 1 4 3 --------------+---+-------+------+------ x. .. .. & | 2 | 12 * | 2 2 | 1 2 1 oo3oo3oo&#x | 2 | * 12 | 0 4 | 0 2 2 --------------+---+-------+------+------ x.3o. .. & | 3 | 3 0 | 8 * | 1 1 0 xo .. ..&#x & | 3 | 1 2 | * 24 | 0 1 1 --------------+---+-------+------+------ x.3o.3o. & ♦ 4 | 6 0 | 4 0 | 2 * * xo3oo ..&#x & ♦ 4 | 3 3 | 1 3 | * 8 * xo .. ox&#x ♦ 4 | 2 4 | 0 4 | * * 6
oxo3ooo4ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o..3o..4o.. | 1 * * ♦ 6 0 0 | 12 0 0 | 8 0 .o.3.o.4.o. | * 6 * ♦ 1 4 1 | 4 4 4 | 4 4 ..o3..o4..o | * * 1 ♦ 0 0 6 | 0 0 12 | 0 8 ---------------+-------+--------+---------+---- oo.3oo.4oo.&#x | 1 1 0 | 6 * * | 4 0 0 | 4 0 .x. ... ... | 0 2 0 | * 12 * | 1 2 1 | 2 2 .oo3.oo4.oo&#x | 0 1 1 | * * 6 | 0 0 4 | 0 4 ---------------+-------+--------+---------+---- ox. ... ...&#x | 1 2 0 | 2 1 0 | 12 * * | 2 0 .x.3.o. ... | 0 3 0 | 0 3 0 | * 8 * | 1 1 .xo ... ...&#x | 0 2 1 | 0 1 2 | * * 12 | 0 2 ---------------+-------+--------+---------+---- ox.3oo. ...&#x ♦ 1 3 0 | 3 3 0 | 3 1 0 | 8 * .xo3.oo ...&#x ♦ 0 3 1 | 0 3 3 | 0 1 3 | * 8
or o..3o..4o.. & | 2 * ♦ 6 0 | 12 0 | 8 .o.3.o.4.o. | * 6 ♦ 2 4 | 8 4 | 8 -----------------+-----+-------+------+--- oo.3oo.4oo.&#x & | 1 1 | 12 * | 4 0 | 4 .x. ... ... | 0 2 | * 12 | 2 2 | 4 -----------------+-----+-------+------+--- ox. ... ...&#x & | 1 2 | 2 1 | 24 * | 2 .x.3.o. ... | 0 3 | 0 3 | * 8 | 2 -----------------+-----+-------+------+--- ox.3oo. ...&#x & ♦ 1 3 | 3 3 | 3 1 | 16
ooo3oxo3ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o..3o..3o.. | 1 * * ♦ 6 0 0 | 12 0 0 0 | 4 4 0 0 .o.3.o.3.o. | * 6 * ♦ 1 4 1 | 4 2 2 4 | 2 2 2 2 ..o3..o3..o | * * 1 ♦ 0 0 6 | 0 0 0 12 | 0 0 4 4 ---------------+-------+--------+-----------+-------- oo.3oo.3oo.&#x | 1 1 0 | 6 * * | 4 0 0 0 | 2 2 0 0 ... .x. ... | 0 2 0 | * 12 * | 1 1 1 1 | 1 1 1 1 .oo3.oo3.oo&#x | 0 1 1 | * * 6 | 0 0 0 4 | 0 0 2 2 ---------------+-------+--------+-----------+-------- ... ox. ...&#x | 1 2 0 | 2 1 0 | 12 * * * | 1 1 0 0 .o.3.x. ... | 0 3 0 | 0 3 0 | * 4 * * | 1 0 1 0 ... .x.3.o. | 0 3 0 | 0 3 0 | * * 4 * | 0 1 0 1 ... .xo ...&#x | 0 2 1 | 0 1 2 | * * * 12 | 0 0 1 1 ---------------+-------+--------+-----------+-------- oo.3ox. ...&#x ♦ 1 3 0 | 3 3 0 | 3 1 0 0 | 4 * * * ... ox.3oo.&#x ♦ 1 3 0 | 3 3 0 | 3 0 1 0 | * 4 * * .oo3.xo ...&#x ♦ 0 3 1 | 0 3 3 | 0 1 0 3 | * * 4 * ... .xo3.oo&#x ♦ 0 3 1 | 0 3 3 | 0 0 1 3 | * * * 4
or o..3o..3o.. & | 2 * ♦ 6 0 | 12 0 0 | 4 4 .o.3.o.3.o. | * 6 ♦ 2 4 | 8 2 2 | 4 4 -----------------+-----+-------+--------+---- oo.3oo.3oo.&#x & | 1 1 | 12 * | 4 0 0 | 2 2 ... .x. ... | 0 2 | * 12 | 2 1 1 | 2 2 -----------------+-----+-------+--------+---- ... ox. ...&#x & | 1 2 | 2 1 | 24 * * | 1 1 .o.3.x. ... | 0 3 | 0 3 | * 4 * | 2 0 ... .x.3.o. | 0 3 | 0 3 | * * 4 | 0 2 -----------------+-----+-------+--------+---- oo.3ox. ...&#x & ♦ 1 3 | 3 3 | 3 1 0 | 8 * ... ox.3oo.&#x & ♦ 1 3 | 3 3 | 3 0 1 | * 8
o(qo)o o(ox)o4o(oo)o&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o(..). o(..).4o(..). & | 2 * * ♦ 2 4 0 0 | 8 4 0 | 8 .(o.). .(o.).4.(o.). | * 2 * ♦ 2 0 4 0 | 8 0 4 | 8 .(.o). .(.o).4.(.o). | * * 4 ♦ 0 2 2 2 | 4 4 4 | 8 --------------------------+-------+---------+--------+--- o(o.). o(o.).4o(o.).&#x & | 1 1 0 | 4 * * * | 4 0 0 | 4 o(.o). o(.o).4o(.o).&#x & | 1 0 1 | * 8 * * | 2 2 0 | 4 .(oo). .(oo).4.(oo).&#x | 0 1 1 | * * 8 * | 2 0 2 | 4 .(..). .(.x). .(..). | 0 0 2 | * * * 4 | 0 2 2 | 4 --------------------------+-------+---------+--------+--- o(oo). o(oo).4o(oo).&#x & | 1 1 1 | 1 1 1 0 | 16 * * | 2 .(..). o(.x). .(..).&#x & | 1 0 2 | 0 2 0 1 | * 8 * | 2 .(..). .(ox). .(..).&#x | 0 1 2 | 0 0 2 1 | * * 8 | 2 --------------------------+-------+---------+--------+--- .(..). o(ox). .(..).&#x & ♦ 1 1 2 | 1 2 2 1 | 2 1 1 | 16
o(qoo)o o(oqo)o o(ooq)o&#xt → both heights = 1/sqrt(2) = 0.707107 (pt || pseudo oct || pt) o(...). o(...). o(...). | 1 * * * * ♦ 2 2 2 0 0 0 0 0 0 | 4 4 4 0 0 0 0 | 8 0 .(o..). .(o..). .(o..). | * 2 * * * ♦ 1 0 0 2 2 1 0 0 0 | 2 2 0 4 2 2 0 | 4 4 .(.o.). .(.o.). .(.o.). | * * 2 * * ♦ 0 1 0 2 0 0 2 1 0 | 2 0 2 4 2 0 2 | 4 4 .(..o). .(..o). .(..o). | * * * 2 * ♦ 0 0 1 0 2 0 2 0 1 | 0 2 2 4 0 2 2 | 4 4 .(...)o .(...)o .(...)o | * * * * 1 ♦ 0 0 0 0 0 2 0 2 2 | 0 0 0 0 4 4 4 | 0 8 ---------------------------+-----------+-------------------+---------------+---- o(o..). o(o..). o(o..).&#x | 1 1 0 0 0 | 2 * * * * * * * * | 2 2 0 0 0 0 0 | 4 0 o(.o.). o(.o.). o(.o.).&#x | 1 0 1 0 0 | * 2 * * * * * * * | 2 0 2 0 0 0 0 | 4 0 o(..o). o(..o). o(..o).&#x | 1 0 0 1 0 | * * 2 * * * * * * | 0 2 2 0 0 0 0 | 4 0 .(oo.). .(oo.). .(oo.).&#x | 0 1 1 0 0 | * * * 4 * * * * * | 1 0 0 2 1 0 0 | 2 2 .(o.o). .(o.o). .(o.o).&#x | 0 1 0 1 0 | * * * * 4 * * * * | 0 1 0 2 0 1 0 | 2 2 .(o..)o .(o..)o .(o..)o&#x | 0 1 0 0 1 | * * * * * 2 * * * | 0 0 0 0 2 2 0 | 0 4 .(.oo). .(.oo). .(.oo).&#x | 0 0 1 1 0 | * * * * * * 4 * * | 0 0 1 2 0 0 1 | 2 2 .(.o.)o .(.o.)o .(.o.)o&#x | 0 0 1 0 1 | * * * * * * * 2 * | 0 0 0 0 2 0 2 | 0 4 .(..o)o .(..o)o .(..o)o&#x | 0 0 0 1 1 | * * * * * * * * 2 | 0 0 0 0 0 2 2 | 0 4 ---------------------------+-----------+-------------------+---------------+---- o(oo.). o(oo.). o(oo.).&#x | 1 1 1 0 0 | 1 1 0 1 0 0 0 0 0 | 4 * * * * * * | 2 0 o(o.o). o(o.o). o(o.o).&#x | 1 1 0 1 0 | 1 0 1 0 1 0 0 0 0 | * 4 * * * * * | 2 0 o(.oo). o(.oo). o(.oo).&#x | 1 0 1 1 0 | 0 1 1 0 0 0 1 0 0 | * * 4 * * * * | 2 0 .(ooo). .(ooo). .(ooo).&#x | 0 1 1 1 0 | 0 0 0 1 1 0 1 0 0 | * * * 8 * * * | 1 1 .(oo.)o .(oo.)o .(oo.)o&#x | 0 1 1 0 1 | 0 0 0 1 0 1 0 1 0 | * * * * 4 * * | 0 2 .(o.o)o .(o.o)o .(o.o)o&#x | 0 1 0 1 1 | 0 0 0 0 1 1 0 0 1 | * * * * * 4 * | 0 2 .(.oo)o .(.oo)o .(.oo)o&#x | 0 0 1 1 1 | 0 0 0 0 0 0 1 1 1 | * * * * * * 4 | 0 2 ---------------------------+-----------+-------------------+---------------+---- o(ooo). o(ooo). o(ooo).&#x ♦ 1 1 1 1 0 | 1 1 1 1 1 0 1 0 0 | 1 1 1 1 0 0 0 | 8 * .(ooo)o .(ooo)o .(ooo)o&#x ♦ 0 1 1 1 1 | 0 0 0 1 1 1 1 1 1 | 0 0 0 1 1 1 1 | * 8
xox oxo4ooo&#xt → both heights = 1/2 (line || perp pseudo {4} || line) o.. o..4o.. | 2 * * ♦ 1 4 1 0 0 0 | 4 4 4 0 0 | 4 4 0 .o. .o.4.o. | * 4 * ♦ 0 2 0 2 2 0 | 1 4 2 1 4 | 2 4 2 ..o ..o4..o | * * 2 ♦ 0 0 1 0 4 1 | 0 0 4 4 4 | 0 4 4 ---------------+-------+-------------+-----------+------ x.. ... ... | 2 0 0 | 1 * * * * * | 4 0 0 0 0 | 4 0 0 oo. oo.4oo.&#x | 1 1 0 | * 8 * * * * | 1 2 1 0 0 | 2 2 0 o.o o.o4o.o&#x | 1 0 1 | * * 2 * * * | 0 0 4 0 0 | 0 4 0 ... .x. ... | 0 2 0 | * * * 4 * * | 0 2 0 0 2 | 1 2 1 .oo .oo4.oo&#x | 0 1 1 | * * * * 8 * | 0 0 1 1 2 | 0 2 2 ..x ... ... | 0 0 2 | * * * * * 1 | 0 0 0 4 0 | 0 0 4 ---------------+-------+-------------+-----------+------ xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 0 | 4 * * * * | 2 0 0 ... ox. ...&#x | 1 2 0 | 0 2 0 1 0 0 | * 8 * * * | 1 1 0 ooo ooo4ooo&#x | 1 1 1 | 0 1 1 0 1 0 | * * 8 * * | 0 2 0 .ox ... ...&#x | 0 1 2 | 0 0 0 0 2 1 | * * * 4 * | 0 0 2 ... .xo ...&#x | 0 2 1 | 0 0 0 1 2 0 | * * * * 8 | 0 1 1 ---------------+-------+-------------+-----------+------ xo. ox. ...&#x ♦ 2 2 0 | 1 4 0 1 0 0 | 2 2 0 0 0 | 4 * * ... oxo ...&#x ♦ 1 2 1 | 0 2 1 1 2 0 | 0 1 2 0 1 | * 8 * .ox .xo ...&#x ♦ 0 2 2 | 0 0 0 1 4 1 | 0 0 0 2 2 | * * 4
or o.. o..4o.. & | 4 * ♦ 1 4 1 0 | 4 4 4 | 4 4 .o. .o.4.o. | * 4 ♦ 0 4 0 2 | 2 8 2 | 4 4 -----------------+-----+----------+--------+---- x.. ... ... & | 2 0 | 2 * * * | 4 0 0 | 4 0 oo. oo.4oo.&#x & | 1 1 | * 16 * * | 1 2 1 | 2 2 o.o o.o4o.o&#x | 2 0 | * * 2 * | 0 0 4 | 0 4 ... .x. ... | 0 2 | * * * 4 | 0 4 0 | 2 2 -----------------+-----+----------+--------+---- xo. ... ...&#x & | 2 1 | 1 2 0 0 | 8 * * | 2 0 ... ox. ...&#x & | 1 2 | 0 2 0 1 | * 16 * | 1 1 ooo ooo4ooo&#x | 2 1 | 0 2 1 0 | * * 8 | 0 2 -----------------+-----+----------+--------+---- xo. ox. ...&#x & ♦ 2 2 | 1 4 0 1 | 2 2 0 | 8 * ... oxo ...&#x ♦ 2 2 | 0 4 1 1 | 0 2 2 | * 8
xox oxo oxo&#xt → both heights = 1/2 (line || perp pseudo {4} || line) o.. o.. o.. | 2 * * ♦ 1 4 1 0 0 0 0 | 4 2 2 4 0 0 0 | 2 2 2 2 0 0 .o. .o. .o. | * 4 * ♦ 0 2 0 1 1 2 0 | 1 2 2 2 1 2 2 | 1 1 2 2 1 1 ..o ..o ..o | * * 2 ♦ 0 0 1 0 0 4 1 | 0 0 0 4 4 2 2 | 0 0 2 2 2 2 ---------------+-------+---------------+---------------+------------ x.. ... ... | 2 0 0 | 1 * * * * * * | 4 0 0 0 0 0 0 | 2 2 0 0 0 0 oo. oo. oo.&#x | 1 1 0 | * 8 * * * * * | 1 1 1 1 0 0 0 | 1 1 1 1 0 0 o.o o.o o.o&#x | 1 0 1 | * * 2 * * * * | 0 0 0 4 0 0 0 | 0 0 2 2 0 0 ... .x. ... | 0 2 0 | * * * 2 * * * | 0 2 0 0 0 2 0 | 1 0 2 0 1 0 ... ... .x. | 0 2 0 | * * * * 2 * * | 0 0 2 0 0 0 2 | 0 1 0 2 0 1 .oo .oo .oo&#x | 0 1 1 | * * * * * 8 * | 0 0 0 1 1 1 1 | 0 0 1 1 1 1 ..x ... ... | 0 0 2 | * * * * * * 1 | 0 0 0 0 4 0 0 | 0 0 0 0 2 2 ---------------+-------+---------------+---------------+------------ xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 0 0 | 4 * * * * * * | 1 1 0 0 0 0 ... ox. ...&#x | 1 2 0 | 0 2 0 1 0 0 0 | * 4 * * * * * | 1 0 1 0 0 0 ... ... ox.&#x | 1 2 0 | 0 2 0 0 1 0 0 | * * 4 * * * * | 0 1 0 1 0 0 ooo ooo ooo&#x | 1 1 1 | 0 1 1 0 0 1 0 | * * * 8 * * * | 0 0 1 1 0 0 .ox ... ...&#x | 0 1 2 | 0 0 0 0 0 2 1 | * * * * 4 * * | 0 0 0 0 1 1 ... .xo ...&#x | 0 2 1 | 0 0 0 1 0 2 0 | * * * * * 4 * | 0 0 1 0 1 0 ... ... .xo&#x | 0 2 1 | 0 0 0 0 1 2 0 | * * * * * * 4 | 0 0 0 1 0 1 ---------------+-------+---------------+---------------+------------ xo. ox. ...&#x ♦ 2 2 0 | 1 4 0 1 0 0 0 | 2 2 0 0 0 0 0 | 2 * * * * * xo. ... ox.&#x ♦ 2 2 0 | 1 4 0 0 1 0 0 | 2 0 2 0 0 0 0 | * 2 * * * * ... oxo ...&#x ♦ 1 2 1 | 0 2 1 1 0 2 0 | 0 1 0 2 0 1 0 | * * 4 * * * ... ... oxo&#x ♦ 1 2 1 | 0 2 1 0 1 2 0 | 0 0 1 2 0 0 1 | * * * 4 * * .ox .xo ...&#x ♦ 0 2 2 | 0 0 0 1 0 4 1 | 0 0 0 0 2 2 0 | * * * * 2 * .ox ... .xo&#x ♦ 0 2 2 | 0 0 0 0 1 4 1 | 0 0 0 0 2 0 2 | * * * * * 2
or o.. o.. o.. & | 4 * ♦ 1 4 1 0 0 | 4 2 2 4 | 2 2 2 2 .o. .o. .o. | * 4 ♦ 0 4 0 1 1 | 2 4 4 2 | 2 2 2 2 -----------------+-----+------------+---------+-------- x.. ... ... & | 2 0 | 2 * * * * | 4 0 0 0 | 2 2 0 0 oo. oo. oo.&#x & | 1 1 | * 16 * * * | 1 1 1 1 | 1 1 1 1 o.o o.o o.o&#x | 2 0 | * * 2 * * | 0 0 0 4 | 0 0 2 2 ... .x. ... | 0 2 | * * * 2 * | 0 4 0 0 | 2 0 2 0 ... ... .x. | 0 2 | * * * * 2 | 0 0 4 0 | 0 2 0 2 -----------------+-----+------------+---------+-------- xo. ... ...&#x & | 2 1 | 1 2 0 0 0 | 8 * * * | 1 1 0 0 ... ox. ...&#x & | 1 2 | 0 2 0 1 0 | * 8 * * | 1 0 1 0 ... ... ox.&#x & | 1 2 | 0 2 0 0 1 | * * 8 * | 0 1 0 1 ooo ooo ooo&#x | 2 1 | 0 2 1 0 0 | * * * 8 | 0 0 1 1 -----------------+-----+------------+---------+-------- xo. ox. ...&#x & ♦ 2 2 | 1 4 0 1 0 | 2 2 0 0 | 4 * * * xo. ... ox.&#x & ♦ 2 2 | 1 4 0 0 1 | 2 0 2 0 | * 4 * * ... oxo ...&#x ♦ 2 2 | 0 4 1 1 0 | 0 2 0 2 | * * 4 * ... ... oxo&#x ♦ 2 2 | 0 4 1 0 1 | 0 0 2 2 | * * * 4
xoo3oox oqo&#xt   → both heights = 1/sqrt(6) = 0.408248
({3} || perp q-line || dual {3})
o..3o.. o..    | 3 * * ♦ 2 2 2 0 0 | 1 4 2 1  4 0 0 | 2 4 2 0
.o.3.o. .o.    | * 2 * ♦ 0 3 0 3 0 | 0 3 0 0  6 3 0 | 1 3 3 1
..o3..o ..o    | * * 3 ♦ 0 0 2 2 2 | 0 0 1 2  4 4 1 | 0 2 4 2
---------------+-------+-----------+----------------+--------
x.. ... ...    | 2 0 0 | 3 * * * * | 1 2 1 0  0 0 0 | 2 2 0 0
oo.3oo. oo.&#x | 1 1 0 | * 6 * * * | 0 2 0 0  2 0 0 | 1 2 1 0
o.o3o.o o.o&#x | 1 0 1 | * * 6 * * | 0 0 1 1  2 0 0 | 0 2 2 0
.oo3.oo .oo&#x | 0 1 1 | * * * 6 * | 0 0 0 0  2 2 0 | 0 1 2 1
... ..x ...    | 0 0 2 | * * * * 3 | 0 0 0 1  0 2 1 | 0 0 2 2
---------------+-------+-----------+----------------+--------
x..3o.. ...    | 3 0 0 | 3 0 0 0 0 | 1 * * *  * * * | 2 0 0 0
xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 | * 6 * *  * * * | 1 1 0 0
x.o ... ...&#x | 2 0 1 | 1 0 2 0 0 | * * 3 *  * * * | 0 2 0 0
... o.x ...&#x | 1 0 2 | 0 0 2 0 1 | * * * 3  * * * | 0 0 2 0
ooo3ooo ooo&#x | 1 1 1 | 0 1 1 1 0 | * * * * 12 * * | 0 1 1 0
... .ox ...&#x | 0 1 2 | 0 0 0 2 1 | * * * *  * 6 * | 0 0 1 1
..o3..x ...    | 0 0 3 | 0 0 0 0 3 | * * * *  * * 1 | 0 0 0 2
---------------+-------+-----------+----------------+--------
xo.3oo. ...&#x ♦ 3 1 0 | 3 3 0 0 0 | 1 3 0 0  0 0 0 | 2 * * *
xoo ... ...&#x ♦ 2 1 1 | 1 2 2 1 0 | 0 1 1 0  2 0 0 | * 6 * *
... oox ...&#x ♦ 1 1 2 | 0 1 2 2 1 | 0 0 0 1  2 1 0 | * * 6 *
.oo3.ox ...&#x ♦ 0 1 3 | 0 0 0 3 3 | 0 0 0 0  0 3 1 | * * * 2
or o..3o.. o.. & | 6 * ♦ 2 2 2 | 1 4 3 4 | 2 6 .o.3.o. .o. | * 2 ♦ 0 6 0 | 0 6 0 6 | 2 6 ------------------+-----+--------+-----------+----- x.. ... ... & | 2 0 | 6 * * | 1 2 1 0 | 2 2 oo.3oo. oo.&#x & | 1 1 | * 12 * | 0 2 0 2 | 1 3 o.o3o.o o.o&#x | 2 0 | * * 6 | 0 0 2 2 | 0 4 ------------------+-----+--------+-----------+----- x..3o.. ... & | 3 0 | 3 0 0 | 2 * * * | 2 0 xo. ... ...&#x & | 2 1 | 1 2 0 | * 12 * * | 1 1 x.o ... ...&#x & | 3 0 | 1 0 2 | * * 6 * | 0 2 ooo3ooo ooo&#x | 2 1 | 0 2 1 | * * * 12 | 0 2 ------------------+-----+--------+-----------+----- xo.3oo. ...&#x & ♦ 3 1 | 3 3 0 | 1 3 0 0 | 4 * xoo ... ...&#x & ♦ 3 1 | 1 3 2 | 0 1 1 2 | * 12
oxoo3ooox&#xr   → all cyclical heights = sqrt(2/3) = 0.816497
                  in fact this lace simplex degenerates into a rhomb with diagonals:
                  height(1,3) = sqrt(2) = 1.414214
                  height(2,4) = sqrt(2/3) = 0.816497
(pt || ({3} || inv {3}) || pt)
o(..).3o(..).     & | 2 * ♦ 3 3 0 0 | 3 3  6 0 0 | 1 1 3 3
.(o.).3.(o.).     & | * 6 ♦ 1 1 2 2 | 2 2  4 1 3 | 1 1 3 3
--------------------+-----+---------+------------+--------
o(o.).3o(o.).&#x  & | 1 1 | 6 * * * | 2 0  2 0 0 | 1 0 2 1
o(.o).3o(.o).&#x  & | 1 1 | * 6 * * | 0 2  2 0 0 | 0 1 1 2
.(x.). .(..).     & | 0 2 | * * 6 * | 1 1  0 1 1 | 1 1 1 1
.(oo).3.(oo).&#x  & | 0 2 | * * * 6 | 0 0  2 0 2 | 0 0 2 2
--------------------+-----+---------+------------+--------
o(x.). .(..).&#x  & | 1 2 | 2 0 1 0 | 6 *  * * * | 1 0 1 0
.(..). o(.x).&#x  & | 1 2 | 0 2 1 0 | * 6  * * * | 0 1 0 1
o(oo).3o(oo).&#x  & | 1 2 | 1 1 0 1 | * * 12 * * | 0 0 1 1
.(x.).3.(o.).     & | 0 3 | 0 0 3 0 | * *  * 2 * | 1 1 0 0
.(xo). .(..).     & | 0 3 | 0 0 1 2 | * *  * * 6 | 0 0 1 1
--------------------+-----+---------+------------+--------
o(x.).3o(o.).&#x  & ♦ 1 3 | 3 0 3 0 | 3 0  0 1 0 | 2 * * *
o(.o).3o(.x).&#x  & ♦ 1 3 | 0 3 3 0 | 0 3  0 1 0 | * 2 * *
o(xo). .(..).&#x  & ♦ 1 3 | 2 1 1 2 | 1 0  2 0 1 | * * 6 *
.(..). o(ox).&#x  & ♦ 1 3 | 1 2 1 2 | 0 1  2 0 1 | * * * 6
xo4oo ox4oo&#zx   → height = 0
(tegum sum of {4} and fully perp {4})
(tegum product of 2 {4})
o.4o. o.4o.    | 4 * ♦ 2  4 * |  8  4 |  8
.o4.o .o4.o    | * 4 ♦ 0  4 2 |  4  8 |  8
---------------+-----+--------+-------+---
x. .. .. ..    | 2 0 | 4  * * |  4  0 |  4
oo4oo oo4oo&#x | 1 1 | * 16 * |  2  2 |  4
.. .. .x ..    | 0 2 | *  * 4 |  0  4 |  4
---------------+-----+--------+-------+---
xo .. .. ..&#x | 2 1 | 1  2 0 | 16  * |  2
.. .. ox ..&#x | 1 2 | 0  2 1 |  * 16 |  2
---------------+-----+--------+-------+---
xo .. ox ..&#x ♦ 2 2 | 1  4 1 |  2  2 | 16
or o.4o. o.4o. & | 8 ♦ 2 4 | 12 | 8 -----------------+---+------+----+--- x. .. .. .. & | 2 | 8 * | 4 | 4 oo4oo oo4oo&#x | 2 | * 16 | 4 | 4 -----------------+---+------+----+--- xo .. .. ..&#x & | 3 | 1 2 | 32 | 2 -----------------+---+------+----+--- xo .. ox ..&#x ♦ 4 | 2 4 | 4 | 16
xo xo ox4oo&#zx   → height = 0
(tegum sum of {4} and fully perp {4})
(tegum product of 2 {4})
o. o. o.4o.    | 4 * ♦ 1 1  4 0 | 4 4  4 | 4 4
.o .o .o4.o    | * 4 ♦ 0 0  4 2 | 2 2  8 | 4 4
---------------+-----+----------+--------+----
x. .. .. ..    | 2 0 | 2 *  * * | 4 0  0 | 4 0
.. x. .. ..    | 2 0 | * 2  * * | 0 4  0 | 0 4
oo oo oo4oo&#x | 1 1 | * * 16 * | 1 1  2 | 2 2
.. .. .x ..    | 0 2 | * *  * 4 | 0 0  4 | 2 2
---------------+-----+----------+--------+----
xo .. .. ..&#x | 2 1 | 1 0  2 0 | 8 *  * | 2 0
.. xo .. ..&#x | 2 1 | 0 1  2 0 | * 8  * | 0 2
.. .. ox ..&#x | 1 2 | 0 0  2 1 | * * 16 | 1 1
---------------+-----+----------+--------+----
xo .. ox ..&#x ♦ 2 2 | 1 0  2 1 | 2 0  2 | 8 *
.. xo ox ..&#x ♦ 2 2 | 0 1  2 1 | 0 2  2 | * 8
xo xo ox ox&#zx   → height = 0
(tegum sum of {4} and fully perp {4})
(tegum product of 2 {4})
o. o. o. o.     | 4 * ♦ 1 1  4 0 0 | 4 4 2 2 | 2 2 2 2
.o .o .o .o     | * 4 ♦ 0 0  4 1 1 | 2 2 4 4 | 2 2 2 2
----------------+-----+------------+---------+--------
x. .. .. ..     | 2 0 | 2 *  * * * | 4 0 0 0 | 2 2 0 0
.. x. .. ..     | 2 0 | * 2  * * * | 0 4 0 0 | 0 0 2 2
oo oo oo oo&#x  | 1 1 | * * 16 * * | 1 1 1 1 | 1 1 1 1
.. .. .x ..     | 0 2 | * *  * 2 * | 0 0 4 0 | 2 0 2 0
.. .. .. .x     | 0 2 | * *  * * 2 | 0 0 0 4 | 0 2 0 2
----------------+-----+------------+---------+--------
xo .. .. ..&#x  | 2 1 | 1 0  2 0 0 | 8 * * * | 1 1 0 0
.. xo .. ..&#x  | 2 1 | 0 1  2 0 0 | * 8 * * | 0 0 1 1
.. .. ox ..&#x  | 1 2 | 0 0  2 1 0 | * * 8 * | 1 0 1 0
.. .. .. ox&#x  | 1 2 | 0 0  2 0 1 | * * * 8 | 0 1 0 1
----------------+-----+------------+---------+--------
xo .. ox ..&#x  ♦ 2 2 | 1 0  4 1 0 | 2 0 2 0 | 4 * * *
xo .. .. ox&#x  ♦ 2 2 | 1 0  4 0 1 | 2 0 0 2 | * 4 * *
.. xo ox ..&#x  ♦ 2 2 | 0 1  4 1 0 | 0 2 2 0 | * * 4 *
.. xo .. ox&#x  ♦ 2 2 | 0 1  4 0 1 | 0 2 0 2 | * * * 4
xoxo oxox&#xr   → all cyclical heights = 1/sqrt(2) = 0.707107
                  (in fact this lace simplex degenerates into a square)
o... o...    | 2 * * * ♦ 1 2 1 2 0 0 0 0 0 0 | 2 1 2 1 2 2 2 0 0 0 0 0 | 1 1 1 2 1 2 0 0 0
.o.. .o..    | * 2 * * ♦ 0 2 0 0 1 2 1 0 0 0 | 1 2 0 0 2 2 0 1 2 2 0 0 | 1 0 2 1 0 2 1 1 0
..o. ..o.    | * * 2 * ♦ 0 0 1 0 0 2 0 1 2 0 | 0 0 0 0 2 0 2 2 1 2 2 1 | 0 0 1 0 1 2 1 2 1
...o ...o    | * * * 2 ♦ 0 0 0 2 0 0 1 0 2 1 | 0 0 1 2 0 2 2 0 0 2 1 2 | 0 1 0 1 2 2 0 1 1
-------------+---------+---------------------+-------------------------+------------------
x... ....    | 2 0 0 0 | 1 * * * * * * * * * | 2 0 2 0 0 0 0 0 0 0 0 0 | 1 1 0 2 0 0 0 0 0
oo.. oo..&#x | 1 1 0 0 | * 4 * * * * * * * * | 1 1 0 0 1 1 0 0 0 0 0 0 | 1 0 1 1 0 1 0 0 0
o.o. o.o.&#x | 1 0 1 0 | * * 2 * * * * * * * | 0 0 0 0 2 0 2 0 0 0 0 0 | 0 0 1 0 1 2 0 0 0
o..o o..o&#x | 1 0 0 1 | * * * 4 * * * * * * | 0 0 1 1 0 1 1 0 0 0 0 0 | 0 1 0 1 1 1 0 0 0
.... .x..    | 0 2 0 0 | * * * * 1 * * * * * | 0 2 0 0 0 0 0 0 2 0 0 0 | 1 0 2 0 0 0 1 0 0
.oo. .oo.&#x | 0 1 1 0 | * * * * * 4 * * * * | 0 0 0 0 1 0 0 1 1 1 0 0 | 0 0 1 0 0 1 1 1 0
.o.o .o.o&#x | 0 1 0 1 | * * * * * * 2 * * * | 0 0 0 0 0 2 0 0 0 2 0 0 | 0 0 0 1 0 2 0 1 0
..x. ....    | 0 0 2 0 | * * * * * * * 1 * * | 0 0 0 0 0 0 0 2 0 0 2 0 | 0 0 0 0 0 0 1 2 1
..oo ..oo&#x | 0 0 1 1 | * * * * * * * * 4 * | 0 0 0 0 0 0 1 0 0 1 1 1 | 0 0 0 0 1 1 0 1 1
.... ...x    | 0 0 0 2 | * * * * * * * * * 1 | 0 0 0 2 0 0 0 0 0 0 0 2 | 0 1 0 0 2 0 0 0 1
-------------+---------+---------------------+-------------------------+------------------
xo.. ....&#x | 2 1 0 0 | 1 2 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0
.... ox..&#x | 1 2 0 0 | 0 2 0 0 1 0 0 0 0 0 | * 2 * * * * * * * * * * | 1 0 1 0 0 0 0 0 0
x..o ....&#x | 2 0 0 1 | 1 0 0 2 0 0 0 0 0 0 | * * 2 * * * * * * * * * | 0 1 0 1 0 0 0 0 0
.... o..x&#x | 1 0 0 2 | 0 0 0 2 0 0 0 0 0 1 | * * * 2 * * * * * * * * | 0 1 0 0 1 0 0 0 0
ooo. ooo.&#x | 1 1 1 0 | 0 1 1 0 0 1 0 0 0 0 | * * * * 4 * * * * * * * | 0 0 1 0 0 1 0 0 0
oo.o oo.o&#x | 1 1 0 1 | 0 1 0 1 0 0 1 0 0 0 | * * * * * 4 * * * * * * | 0 0 0 1 0 1 0 0 0
o.oo o.oo&#x | 1 0 1 1 | 0 0 1 1 0 0 0 0 1 0 | * * * * * * 4 * * * * * | 0 0 0 0 1 1 0 0 0
.ox. ....&#x | 0 1 2 0 | 0 0 0 0 0 2 0 1 0 0 | * * * * * * * 2 * * * * | 0 0 0 0 0 0 1 1 0
.... .xo.&#x | 0 2 1 0 | 0 0 0 0 1 2 0 0 0 0 | * * * * * * * * 2 * * * | 0 0 1 0 0 0 1 0 0
.ooo .ooo&#x | 0 1 1 1 | 0 0 0 0 0 1 1 0 1 0 | * * * * * * * * * 4 * * | 0 0 0 0 0 1 0 1 0
..xo ....&#x | 0 0 2 1 | 0 0 0 0 0 0 0 1 2 0 | * * * * * * * * * * 2 * | 0 0 0 0 0 0 0 1 1
.... ..ox&#x | 0 0 1 2 | 0 0 0 0 0 0 0 0 2 1 | * * * * * * * * * * * 2 | 0 0 0 0 1 0 0 0 1
-------------+---------+---------------------+-------------------------+------------------
xo.. ox..&#x ♦ 2 2 0 0 | 1 4 0 0 1 0 0 0 0 0 | 2 2 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * *
x..o o..x&#x ♦ 2 0 0 2 | 1 0 0 4 0 0 0 0 0 1 | 0 0 2 2 0 0 0 0 0 0 0 0 | * 1 * * * * * * *
.... oxo.&#x ♦ 1 2 1 0 | 0 2 1 0 1 2 0 0 0 0 | 0 1 0 0 2 0 0 0 1 0 0 0 | * * 2 * * * * * *
xo.o ....&#x ♦ 2 1 0 1 | 1 2 0 2 0 0 1 0 0 0 | 1 0 1 0 0 2 0 0 0 0 0 0 | * * * 2 * * * * *
.... o.ox&#x ♦ 1 0 1 2 | 0 0 1 2 0 0 0 0 2 1 | 0 0 0 1 0 0 2 0 0 0 0 1 | * * * * 2 * * * *
oooo oooo&#x ♦ 1 1 1 1 | 0 1 1 1 0 1 1 0 1 0 | 0 0 0 0 1 1 1 0 0 1 0 0 | * * * * * 4 * * *
.ox. .xo.&#x ♦ 0 2 2 0 | 0 0 0 0 1 4 0 1 0 0 | 0 0 0 0 0 0 0 2 2 0 0 0 | * * * * * * 1 * *
.oxo ....&#x ♦ 0 1 2 1 | 0 0 0 0 0 2 1 1 2 0 | 0 0 0 0 0 0 0 1 0 2 1 0 | * * * * * * * 2 *
..xo ..ox&#x ♦ 0 0 2 2 | 0 0 0 0 0 0 0 1 4 1 | 0 0 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * 1
or o... o... & | 8 ♦ 1 4 1 | 6 6 | 2 4 2 ---------------+---+--------+-------+------ x... .... & | 2 | 4 * * | 4 0 | 2 2 0 oo.. oo..&#x & | 2 | * 16 * | 2 2 | 1 2 1 o.o. o.o.&#x & | 2 | * * 4 | 0 4 | 0 2 2 ---------------+---+--------+-------+------ xo.. ....&#x & | 3 | 1 2 0 | 16 * | 1 1 0 ooo. ooo.&#x & | 3 | 0 2 1 | * 16 | 0 1 1 ---------------+---+--------+-------+------ xo.. ox..&#x & ♦ 4 | 2 4 0 | 4 0 | 4 * * xo.o ....&#x & ♦ 4 | 1 4 1 | 2 2 | * 8 * oooo oooo&#x ♦ 4 | 0 4 2 | 0 4 | * * 4
qo ox3oo4oo&#zx → height = 0 (tegum sum of q-line and perp oct) (tegum product of q-line with oct) o. o.3o.4o. | 2 * ♦ 6 0 | 12 0 | 8 .o .o3.o4.o | * 6 ♦ 2 4 | 8 4 | 8 ---------------+-----+-------+------+--- oo oo3oo4oo&#x | 1 1 | 12 * | 4 0 | 4 .. .x .. .. | 0 2 | * 12 | 2 2 | 4 ---------------+-----+-------+------+--- .. ox .. ..&#x | 1 2 | 2 1 | 24 * | 2 .. .x3.o .. | 0 3 | 0 3 | * 8 | 2 ---------------+-----+-------+------+--- .. ox3oo ..&#x ♦ 1 3 | 3 3 | 3 1 | 16
qo oo3ox3oo&#zx → height = 0 (tegum sum of q-line and perp oct) (tegum product of q-line with oct) o. o.3o.3o. | 2 * ♦ 6 0 | 12 0 0 | 4 4 .o .o3.o3.o | * 6 ♦ 2 4 | 8 2 2 | 4 4 ---------------+-----+-------+--------+---- oo oo3oo3oo&#x | 1 1 | 12 * | 4 0 0 | 2 2 .. .. .x .. | 0 2 | * 12 | 2 1 1 | 2 2 ---------------+-----+-------+--------+---- .. .. ox ..&#x | 1 2 | 2 1 | 24 * * | 1 1 .. .o3.x .. | 0 3 | 0 3 | * 4 * | 2 0 .. .. .x3.o | 0 3 | 0 3 | * * 4 | 0 2 ---------------+-----+-------+--------+---- .. oo3ox ..&#x ♦ 1 3 | 3 3 | 3 1 0 | 8 * .. .. ox3oo&#x ♦ 1 3 | 3 3 | 3 0 1 | * 8
qo os2os3os&#zx → height = 0 (tegum sum of q-line and perp oct) (tegum product of q-line with oct) o. demi( o.2o.3o. ) | 2 * ♦ 6 0 0 | 6 6 0 0 | 2 6 .o demi( .o2.o3.o ) | * 6 ♦ 2 2 2 | 4 4 1 3 | 2 6 -----------------------+-----+--------+-----------+----- oo demi( oo2oo3oo )&#x | 1 1 | 12 * * | 2 2 0 0 | 1 3 .. .s2.s .. | 0 2 | * 6 * | 2 0 0 2 | 0 4 .. sefa( .. .s3.s ) | 0 2 | * * 6 | 0 2 1 1 | 2 2 -----------------------+-----+--------+-----------+----- oo os2os .. &#x | 1 2 | 2 1 0 | 12 * * * | 0 2 oo sefa( .. os3os )&#x | 1 2 | 2 0 1 | * 12 * * | 1 1 .. .. .s3.s | 0 3 | 0 0 3 | * * 2 * | 2 0 .. sefa( .s2.s3.s ) | 0 3 | 0 2 1 | * * * 6 | 0 2 -----------------------+-----+--------+-----------+----- oo .. os3os &#x ♦ 1 3 | 3 0 3 | 0 3 1 0 | 4 * oo sefa( os2os3os )&#x ♦ 1 3 | 3 2 1 | 2 1 0 1 | * 12
qooo oqoo ooqo oooq&#zx → height = 0 (tegum sum of 4 pairwise perp q-lines) (tegum product of 4 q-lines) o... o... o... o... | 2 * * * ♦ 2 2 2 0 0 0 | 4 4 4 0 | 8 .o.. .o.. .o.. .o.. | * 2 * * ♦ 2 0 0 2 2 0 | 4 4 0 4 | 8 ..o. ..o. ..o. ..o. | * * 2 * ♦ 0 2 0 2 0 2 | 4 0 4 4 | 8 ...o ...o ...o ...o | * * * 2 ♦ 0 0 2 0 2 2 | 0 4 4 4 | 8 ------------------------+---------+-------------+---------+--- oo.. oo.. oo.. oo..&#x | 1 1 0 0 | 4 * * * * * | 2 2 0 0 | 4 o.o. o.o. o.o. o.o.&#x | 1 0 1 0 | * 4 * * * * | 2 0 2 0 | 4 o..o o..o o..o o..o&#x | 1 0 0 1 | * * 4 * * * | 0 2 2 0 | 4 .oo. .oo. .oo. .oo.&#x | 0 1 1 0 | * * * 4 * * | 2 0 0 2 | 4 .o.o .o.o .o.o .o.o&#x | 0 1 0 1 | * * * * 4 * | 0 2 0 2 | 4 ..oo ..oo ..oo ..oo&#x | 0 0 1 1 | * * * * * 4 | 0 0 2 2 | 4 ------------------------+---------+-------------+---------+--- ooo. ooo. ooo. ooo.&#x | 1 1 1 0 | 1 1 0 1 0 0 | 8 * * * | 2 oo.o oo.o oo.o oo.o&#x | 1 1 0 1 | 1 0 1 0 1 0 | * 8 * * | 2 o.oo o.oo o.oo o.oo&#x | 1 0 1 1 | 0 1 1 0 0 1 | * * 8 * | 2 .ooo .ooo .ooo .ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 | * * * 8 | 2 ------------------------+---------+-------------+---------+--- oooo oooo oooo oooo&#x ♦ 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 | 16
  | 
4 * | 2 2 2 0 | 2 4 2 1 2 1 | 4 4  r4b2 vertices
* 4 | 0 2 2 2 | 1 2 1 2 4 2 | 4 4  r2b4 vertices
----+---------+-------------+----
2 0 | 4 * * * | 1 2 1 0 0 0 | 2 2  red square's sides
1 1 | * 8 * * | 1 1 0 1 1 0 | 3 1  red octagon's sides
1 1 | * * 8 * | 0 1 1 0 1 1 | 1 3  blue octagram's sides
0 2 | * * * 4 | 0 0 0 1 2 1 | 2 2  blue square's sides
----+---------+-------------+----
2 1 | 1 2 0 0 | 4 * * * * * | 2 0  {(rrr)}
2 1 | 1 1 1 0 | * 8 * * * * | 1 1  {(rrb)} connected to red square's side
2 1 | 1 0 2 0 | * * 4 * * * | 0 2  {(rbb)} connected to red square's side
1 2 | 0 2 0 1 | * * * 4 * * | 2 0  {(rrb)} connected to blue square's side
1 2 | 0 1 1 1 | * * * * 8 * | 1 1  {(rbb)} connected to blue square's side
1 2 | 0 0 2 1 | * * * * * 4 | 0 2  {(bbb)}
----+---------+-------------+----
2 2 | 1 3 1 1 | 1 1 0 1 1 0 | 8 *  tet comprising 4 consec. octagon's vert.
2 2 | 1 1 3 1 | 0 1 1 0 1 1 | * 8  tet comprising 4 consec. octagram's vert.
 | 
© 2004-2025  | top of page |