| Acronym | ... |
| Name | reduced version of Grünbaumian xo(-x)5xxx xux&#xt |
| |
| Circumradius | sqrt[8+3 sqrt(5)] = 3.835128 |
| Face vector | 40, 95, 69, 15 |
| Confer |
|
In 2025 B. Klein came up with this non-convex regular-faced bistratic lace tower, thereby pointing out that ebots can be used for facets in a non-trivial way too. He derived it as a bistratic section of stut phiddix.
Incidence matrix according to Dynkin symbol
reduced( xo(-x)5xxx xux&#xt by xx5/4xx&#x ) → both heights = sqrt[(5-2 sqrt(5))/20] = 0.162460
o. . 5o.. o.. | 20 * * | 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0
.o . 5.o. .o. | * 10 * | 0 0 0 2 2 2 0 0 | 0 0 0 1 2 2 1 1 2 0 | 0 1 1 2 1
reduced( .. o 5..o ..o ) | * * 10 | 0 0 0 0 0 2 2 1 | 0 0 0 0 0 2 0 2 2 2 | 0 0 2 2 1
------------------------------+----------+------------------------+--------------------------+----------
x. . ... ... | 2 0 0 | 10 * * * * * * * | 1 1 0 1 0 0 0 0 0 0 | 1 1 1 0 0
.. . x.. ... | 2 0 0 | * 10 * * * * * * | 1 0 1 0 1 0 0 0 0 0 | 1 1 0 1 0
.. . ... x.. | 2 0 0 | * * 10 * * * * * | 0 1 1 0 0 1 0 0 0 0 | 1 0 1 1 0
oo . 5oo. oo.&#x | 1 1 0 | * * * 20 * * * * | 0 0 0 1 1 1 0 0 0 0 | 0 1 1 1 0
.. . .x. ...&#x | 0 2 0 | * * * * 10 * * * | 0 0 0 0 1 0 1 0 1 0 | 0 1 0 1 1
.o o 5.oo .oo&#x | 0 1 1 | * * * * * 20 * * | 0 0 0 0 0 1 0 1 1 0 | 0 0 1 1 1
reduced( .. . ..x ... & ) | 0 0 2 | * * * * * * 10 * | 0 0 0 0 0 0 0 1 1 1 | 0 0 1 1 1
reduced( .. . ... ..x ) | 0 0 2 | * * * * * * * 5 | 0 0 0 0 0 2 0 0 0 2 | 0 0 2 2 0
------------------------------+----------+------------------------+--------------------------+----------
x. . 5x.. ... | 10 0 0 | 5 5 0 0 0 0 0 0 | 2 * * * * * * * * * | 1 1 0 0 0
x. . ... x.. | 4 0 0 | 2 0 2 0 0 0 0 0 | * 5 * * * * * * * * | 1 0 1 0 0
.. . x.. x.. | 4 0 0 | 0 2 2 0 0 0 0 0 | * * 5 * * * * * * * | 1 0 0 1 0
xo . ... ...&#x | 2 1 0 | 1 0 0 2 0 0 0 0 | * * * 10 * * * * * * | 0 1 1 0 0
.. . xx. ...&#x | 2 2 0 | 0 1 0 2 1 0 0 0 | * * * * 10 * * * * * | 0 1 0 1 0
.. . ... xux&#xt | 2 2 2 | 0 0 1 2 0 2 0 1 | * * * * * 10 * * * * | 0 0 1 1 0
.o . 5.x. ... | 0 5 0 | 0 0 0 0 5 0 0 0 | * * * * * * 2 * * * | 0 1 0 0 1
.o(-x) ... ...&#x | 0 1 2 | 0 0 0 0 0 2 1 0 | * * * * * * * 10 * * | 0 0 1 0 1
.. . .xx ...&#x | 0 2 2 | 0 0 0 0 1 2 1 0 | * * * * * * * * 10 * | 0 0 0 1 1
reduced( .. . ..x ..x & ) | 0 0 4 | 0 0 0 0 0 0 2 2 | * * * * * * * * * 5 | 0 0 1 1 0
------------------------------+----------+------------------------+--------------------------+----------
x. . 5x.. x.. | 20 0 0 | 10 10 10 0 0 0 0 0 | 2 5 5 0 0 0 0 0 0 0 | 1 * * * * dip
xo . 5xx. ...&#x | 10 5 0 | 5 5 0 10 5 0 0 0 | 1 0 0 5 5 0 1 0 0 0 | * 2 * * * pecu
xo(-x) ... xux&#xt | 4 2 4 | 2 0 2 4 0 4 2 2 | 0 1 0 2 0 2 0 2 0 1 | * * 5 * * ebot
.. . xxx xux&#xt | 4 4 4 | 0 2 2 4 2 4 2 2 | 0 0 1 0 2 2 0 0 2 1 | * * * 5 * hip
reduced( .o(-x)5.xx ...&#x ) | 0 5 5 | 0 0 0 0 5 10 5 0 | 0 0 0 0 0 0 1 5 5 0 | * * * * 2 rapescu
© 2004-2026 | top of page |