Acronym ...
Name reduced version of Grünbaumian xo(-x)5xxx xux&#xt
 
 ©
Circumradius sqrt[8+3 sqrt(5)] = 3.835128
Face vector 40, 95, 69, 15
Confer
Grünbaumian relatives:
xo(-x)5xxx xux&#xt  
uniform relative:
stut phiddix  
general polytopal classes:
ebotics

In 2025 B. Klein came up with this non-convex regular-faced bistratic lace tower, thereby pointing out that ebots can be used for facets in a non-trivial way too. He derived it as a bistratic section of stut phiddix.


Incidence matrix according to Dynkin symbol

reduced( xo(-x)5xxx xux&#xt by xx5/4xx&#x )   → both heights = sqrt[(5-2 sqrt(5))/20] = 0.162460

         o.  . 5o.. o..       | 20  *  * |  1  1  1  1  0  0  0 0 | 1 1 1  1  1  1 0  0  0 0 | 1 1 1 1 0
         .o  . 5.o. .o.       |  * 10  * |  0  0  0  2  2  2  0 0 | 0 0 0  1  2  2 1  1  2 0 | 0 1 1 2 1
reduced( ..  o 5..o ..o     ) |  *  * 10 |  0  0  0  0  0  2  2 1 | 0 0 0  0  0  2 0  2  2 2 | 0 0 2 2 1
------------------------------+----------+------------------------+--------------------------+----------
         x.  .  ... ...       |  2  0  0 | 10  *  *  *  *  *  * * | 1 1 0  1  0  0 0  0  0 0 | 1 1 1 0 0
         ..  .  x.. ...       |  2  0  0 |  * 10  *  *  *  *  * * | 1 0 1  0  1  0 0  0  0 0 | 1 1 0 1 0
         ..  .  ... x..       |  2  0  0 |  *  * 10  *  *  *  * * | 0 1 1  0  0  1 0  0  0 0 | 1 0 1 1 0
         oo  . 5oo. oo.&#x    |  1  1  0 |  *  *  * 20  *  *  * * | 0 0 0  1  1  1 0  0  0 0 | 0 1 1 1 0
         ..  .  .x. ...&#x    |  0  2  0 |  *  *  *  * 10  *  * * | 0 0 0  0  1  0 1  0  1 0 | 0 1 0 1 1
         .o  o 5.oo .oo&#x    |  0  1  1 |  *  *  *  *  * 20  * * | 0 0 0  0  0  1 0  1  1 0 | 0 0 1 1 1
reduced( ..  .  ..x ...   & ) |  0  0  2 |  *  *  *  *  *  * 10 * | 0 0 0  0  0  0 0  1  1 1 | 0 0 1 1 1
reduced( ..  .  ... ..x     ) |  0  0  2 |  *  *  *  *  *  *  * 5 | 0 0 0  0  0  2 0  0  0 2 | 0 0 2 2 0
------------------------------+----------+------------------------+--------------------------+----------
         x.  . 5x.. ...       | 10  0  0 |  5  5  0  0  0  0  0 0 | 2 * *  *  *  * *  *  * * | 1 1 0 0 0
         x.  .  ... x..       |  4  0  0 |  2  0  2  0  0  0  0 0 | * 5 *  *  *  * *  *  * * | 1 0 1 0 0
         ..  .  x.. x..       |  4  0  0 |  0  2  2  0  0  0  0 0 | * * 5  *  *  * *  *  * * | 1 0 0 1 0
         xo  .  ... ...&#x    |  2  1  0 |  1  0  0  2  0  0  0 0 | * * * 10  *  * *  *  * * | 0 1 1 0 0
         ..  .  xx. ...&#x    |  2  2  0 |  0  1  0  2  1  0  0 0 | * * *  * 10  * *  *  * * | 0 1 0 1 0
         ..  .  ... xux&#xt   |  2  2  2 |  0  0  1  2  0  2  0 1 | * * *  *  * 10 *  *  * * | 0 0 1 1 0
         .o  . 5.x. ...       |  0  5  0 |  0  0  0  0  5  0  0 0 | * * *  *  *  * 2  *  * * | 0 1 0 0 1
         .o(-x) ... ...&#x    |  0  1  2 |  0  0  0  0  0  2  1 0 | * * *  *  *  * * 10  * * | 0 0 1 0 1
         ..  .  .xx ...&#x    |  0  2  2 |  0  0  0  0  1  2  1 0 | * * *  *  *  * *  * 10 * | 0 0 0 1 1
reduced( ..  .  ..x ..x   & ) |  0  0  4 |  0  0  0  0  0  0  2 2 | * * *  *  *  * *  *  * 5 | 0 0 1 1 0
------------------------------+----------+------------------------+--------------------------+----------
         x.  . 5x.. x..       | 20  0  0 | 10 10 10  0  0  0  0 0 | 2 5 5  0  0  0 0  0  0 0 | 1 * * * *  dip
         xo  . 5xx. ...&#x    | 10  5  0 |  5  5  0 10  5  0  0 0 | 1 0 0  5  5  0 1  0  0 0 | * 2 * * *  pecu
         xo(-x) ... xux&#xt   |  4  2  4 |  2  0  2  4  0  4  2 2 | 0 1 0  2  0  2 0  2  0 1 | * * 5 * *  ebot
         ..  .  xxx xux&#xt   |  4  4  4 |  0  2  2  4  2  4  2 2 | 0 0 1  0  2  2 0  0  2 1 | * * * 5 *  hip
reduced( .o(-x)5.xx ...&#x  ) |  0  5  5 |  0  0  0  0  5 10  5 0 | 0 0 0  0  0  0 1  5  5 0 | * * * * 2  rapescu

© 2004-2026
top of page