Acronym sefdit dixdy Name small exofissary ditrigonal dihexacosadihecatonicosachoron Circumradius sqrt(3) = 1.732051 General of army rahi Colonel of regiment rissidtixhi Confer gotdatixhi middit thix siddit thix todtixhi

As abstract polytope sefdit dixdy is isomorphic to gefdit dixdy, thereby replacing pentagrams by pentagons, resp. gid by id and siid by giid.

This polychoron is exotic, as 2 classes of triangles coincide pairwise. Also the edges coincide pairwise. It also is fissary, as its vertices coincide by 3. In fact, each vertex figure is kind a x2x || x2v, linked diametrically by edges of length u.

This polychoron can be obtained as blend of middit thix with todtixhi, blending out their ri. Alternatively it can be obtained as blend of siddit thix with gotdatixhi, blending out their giddy.

Incidence matrix according to Dynkin symbol

```x3o3/2x3o5/2*a3*c

. .   . .         | 3600 |    4    4 |    2    4    2    2    2 |   2   1   2   1
------------------+------+-----------+--------------------------+----------------
x .   . .         |    2 | 7200    * |    1    1    1    0    0 |   1   1   1   0
. .   x .         |    2 |    * 7200 |    0    1    0    1    1 |   1   0   1   1
------------------+------+-----------+--------------------------+----------------
x3o   . .         |    3 |    3    0 | 2400    *    *    *    * |   1   1   0   0
x .   x .   *a3*c |    6 |    3    3 |    * 2400    *    *    * |   1   0   1   0
x .   . o5/2*a    |    5 |    5    0 |    *    * 1440    *    * |   0   1   1   0
. o3/2x .         |    3 |    0    3 |    *    *    * 2400    * |   1   0   0   1
. .   x3o         |    3 |    0    3 |    *    *    *    * 2400 |   0   0   1   1
------------------+------+-----------+--------------------------+----------------
x3o3/2x .   *a3*c ♦   12 |   12   12 |    4    4    0    4    0 | 600   *   *   *
x3o   . o5/2*a    ♦   30 |   60    0 |   20    0   12    0    0 |   * 120   *   *
x .   x3o5/2*a3*c ♦   60 |   60   60 |    0   20   12    0   20 |   *   * 120   *
. o3/2x3o         ♦    6 |    0   12 |    0    0    0    4    4 |   *   *   * 600
```

```x3o3/2x3/2o5/3*a3*c

. .   .   .         | 3600 |    4    4 |    2    4    2    2    2 |   2   1   2   1
--------------------+------+-----------+--------------------------+----------------
x .   .   .         |    2 | 7200    * |    1    1    1    0    0 |   1   1   1   0
. .   x   .         |    2 |    * 7200 |    0    1    0    1    1 |   1   0   1   1
--------------------+------+-----------+--------------------------+----------------
x3o   .   .         |    3 |    3    0 | 2400    *    *    *    * |   1   1   0   0
x .   x   .   *a3*c |    6 |    3    3 |    * 2400    *    *    * |   1   0   1   0
x .   .   o5/3*a    |    5 |    5    0 |    *    * 1440    *    * |   0   1   1   0
. o3/2x   .         |    3 |    0    3 |    *    *    * 2400    * |   1   0   0   1
. .   x3/2o         |    3 |    0    3 |    *    *    *    * 2400 |   0   0   1   1
--------------------+------+-----------+--------------------------+----------------
x3o3/2x   .   *a3*c ♦   12 |   12   12 |    4    4    0    4    0 | 600   *   *   *
x3o   .   o5/3*a    ♦   30 |   60    0 |   20    0   12    0    0 |   * 120   *   *
x .   x3/2o5/3*a3*c ♦   60 |   60   60 |    0   20   12    0   20 |   *   * 120   *
. o3/2x3/2o         ♦    6 |    0   12 |    0    0    0    4    4 |   *   *   * 600
```

```x3/2o3x3o5/2*a3*c

.   . . .         | 3600 |    4    4 |    2    4    2    2    2 |   2   1   2   1
------------------+------+-----------+--------------------------+----------------
x   . . .         |    2 | 7200    * |    1    1    1    0    0 |   1   1   1   0
.   . x .         |    2 |    * 7200 |    0    1    0    1    1 |   1   0   1   1
------------------+------+-----------+--------------------------+----------------
x3/2o . .         |    3 |    3    0 | 2400    *    *    *    * |   1   1   0   0
x   . x .   *a3*c |    6 |    3    3 |    * 2400    *    *    * |   1   0   1   0
x   . . o5/2*a    |    5 |    5    0 |    *    * 1440    *    * |   0   1   1   0
.   o3x .         |    3 |    0    3 |    *    *    * 2400    * |   1   0   0   1
.   . x3o         |    3 |    0    3 |    *    *    *    * 2400 |   0   0   1   1
------------------+------+-----------+--------------------------+----------------
x3/2o3x .   *a3*c ♦   12 |   12   12 |    4    4    0    4    0 | 600   *   *   *
x3/2o . o5/2*a    ♦   30 |   60    0 |   20    0   12    0    0 |   * 120   *   *
x   . x3o5/2*a3*c ♦   60 |   60   60 |    0   20   12    0   20 |   *   * 120   *
.   o3x3o         ♦    6 |    0   12 |    0    0    0    4    4 |   *   *   * 600
```

```x3/2o3x3/2o5/3*a3*c

.   . .   .         | 3600 |    4    4 |    2    4    2    2    2 |   2   1   2   1
--------------------+------+-----------+--------------------------+----------------
x   . .   .         |    2 | 7200    * |    1    1    1    0    0 |   1   1   1   0
.   . x   .         |    2 |    * 7200 |    0    1    0    1    1 |   1   0   1   1
--------------------+------+-----------+--------------------------+----------------
x3/2o .   .         |    3 |    3    0 | 2400    *    *    *    * |   1   1   0   0
x   . x   .   *a3*c |    6 |    3    3 |    * 2400    *    *    * |   1   0   1   0
x   . .   o5/3*a    |    5 |    5    0 |    *    * 1440    *    * |   0   1   1   0
.   o3x   .         |    3 |    0    3 |    *    *    * 2400    * |   1   0   0   1
.   . x3/2o         |    3 |    0    3 |    *    *    *    * 2400 |   0   0   1   1
--------------------+------+-----------+--------------------------+----------------
x3/2o3x   .   *a3*c ♦   12 |   12   12 |    4    4    0    4    0 | 600   *   *   *
x3/2o .   o5/3*a    ♦   30 |   60    0 |   20    0   12    0    0 |   * 120   *   *
x   . x3/2o5/3*a3*c ♦   60 |   60   60 |    0   20   12    0   20 |   *   * 120   *
.   o3x3/2o         ♦    6 |    0   12 |    0    0    0    4    4 |   *   *   * 600
```