Acronym siddiddip Name snub-dodecadodecahedron prism Colonel of regiment (is itself locally convex – no other uniform polyhedral members) Externallinks

As abstract polytope siddiddip is isomorphic to isdiddip, thereby replacing prograde pentagrams by retrrograde ones, resp. replacing siddid by isdid.

Incidence matrix according to Dynkin symbol

```x s5/2s5s

. demi( .   . . ) | 120 |  1  1   2   2 |  1  2  2  1  1   3 |  1  1  3 1
------------------+-----+---------------+--------------------+-----------
x demi( .   . . ) |   2 | 60  *   *   * |  1  2  2  0  0   0 |  1  1  3 0
.       s   2 s   ♦   2 |  * 60   *   * |  1  0  0  0  0   2 |  0  0  2 1
. sefa( s5/2s . ) |   2 |  *  * 120   * |  0  1  0  1  0   1 |  1  0  1 1
. sefa( .   s5s ) |   2 |  *  *   * 120 |  0  0  1  0  1   1 |  0  1  1 1
------------------+-----+---------------+--------------------+-----------
x       s   2 s   |   4 |  2  2   0   0 | 30  *  *  *  *   * |  0  0  2 0
x sefa( s5/2s . ) |   4 |  2  0   2   0 |  * 60  *  *  *   * |  1  0  1 0
x sefa( .   s5s ) |   4 |  2  0   0   2 |  *  * 60  *  *   * |  0  1  1 0
.       s5/2s .   ♦   5 |  0  0   5   0 |  *  *  * 24  *   * |  1  0  0 1
.       .   s5s   ♦   5 |  0  0   0   5 |  *  *  *  * 24   * |  0  1  0 1
. sefa( s5/2s5s ) |   3 |  0  1   1   1 |  *  *  *  *  * 120 |  0  0  1 1
------------------+-----+---------------+--------------------+-----------
x       s5/2s .   ♦  10 |  5  0  10   0 |  0  5  0  2  0   0 | 12  *  * *
x       .   s5s   ♦  10 |  5  0   0  10 |  0  0  5  0  2   0 |  * 12  * *
x sefa( s5/2s5s ) ♦   6 |  3  2   2   2 |  1  1  1  0  0   2 |  *  * 60 *
.       s5/2s5s   ♦  60 |  0 30  60  60 |  0  0  0 12 12  60 |  *  *  * 2
```