| Acronym | sinnont | 
| Name | small penteractipenteractitriacontiditeron | 
| Field of sections | 
 | 
| Circumradius | sqrt[7+2 sqrt(2)]/2 = 1.567516 | 
| Inradius wrt. pen | -[5+sqrt(2)]/sqrt(20) = -1.434262 | 
| Inradius wrt. tes | (1+sqrt(2))/2 = 1.207107 | 
| Inradius wrt. steth | 1/2 = 0.5 | 
| Vertex figure | 
 | 
| Coordinates | ((1+sqrt(2))/2, 1/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign | 
| Volume | [120+149 sqrt(2)]/30 = 11.023927 | 
| Surface | [125+120 sqrt(2)+sqrt(5)]/3 = 98.980565 | 
| General of army | scant | 
| Colonel of regiment | scant | 
| Dihedral angles (at margins) | |
| Face vector | 160, 640, 640, 280, 52 | 
| Confer | 
 | 
| External links |     | 
As abstract polytope sinnont is isomorphic to ginnont, thereby replacing octagons by octagrams, resp. socco by gocco and steth by gittith. – As such sinnont is a lieutenant.
Incidence matrix according to Dynkin symbol
     3   3   3   
   x---o---o---o 
  4 \ / 4/3      
     x           
o3o3o3x4x4/3*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 ---------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 ---------------+-----+---------+------------+-----------+--------- . . o3x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4/3*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 ---------------+-----+---------+------------+-----------+--------- . o3o3x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3o . x4/3*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3x4x4/3*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 ---------------+-----+---------+------------+-----------+--------- o3o3o3x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3o3o . x4/3*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3o3x4x4/3*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
    3/2  3   3   
   x---o---o---o 
  4 \ / 4        
     x           
o3o3o3/2x4x4*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 ---------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 ---------------+-----+---------+------------+-----------+--------- . . o3/2x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 ---------------+-----+---------+------------+-----------+--------- . o3o3/2x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3o . x4*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3/2x4x4*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 ---------------+-----+---------+------------+-----------+--------- o3o3o3/2x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3o3o . x4*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3o3/2x4x4*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
     3  3/2  3   
   x---o---o---o 
  4 \ / 4/3      
     x           
o3o3/2o3x4x4/3*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 -----------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 -----------------+-----+---------+------------+-----------+--------- . . o3x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4/3*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 -----------------+-----+---------+------------+-----------+--------- . o3/2o3x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3/2o . x4/3*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3x4x4/3*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 -----------------+-----+---------+------------+-----------+--------- o3o3/2o3x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3o3/2o . x4/3*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3/2o3x4x4/3*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
    3/2 3/2  3   
   x---o---o---o 
  4 \ / 4        
     x           
o3o3/2o3/2x4x4*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 -----------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 -----------------+-----+---------+------------+-----------+--------- . . o3/2x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 -----------------+-----+---------+------------+-----------+--------- . o3/2o3/2x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3/2o . x4*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3/2x4x4*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 -----------------+-----+---------+------------+-----------+--------- o3o3/2o3/2x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3o3/2o . x4*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3/2o3/2x4x4*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
     3   3  3/2  
   x---o---o---o 
  4 \ / 4/3      
     x           
o3/2o3o3x4x4/3*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 -----------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 -----------------+-----+---------+------------+-----------+--------- . . o3x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4/3*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 -----------------+-----+---------+------------+-----------+--------- . o3o3x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3o . x4/3*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3x4x4/3*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 -----------------+-----+---------+------------+-----------+--------- o3/2o3o3x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3/2o3o . x4/3*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3o3x4x4/3*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
    3/2  3  3/2  
   x---o---o---o 
  4 \ / 4        
     x           
o3/2o3o3/2x4x4*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 -----------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 -----------------+-----+---------+------------+-----------+--------- . . o3/2x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 -----------------+-----+---------+------------+-----------+--------- . o3o3/2x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3o . x4*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3/2x4x4*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 -----------------+-----+---------+------------+-----------+--------- o3/2o3o3/2x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3/2o3o . x4*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3o3/2x4x4*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
     3  3/2 3/2  
   x---o---o---o 
  4 \ / 4/3      
     x           
o3/2o3/2o3x4x4/3*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 -------------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 -------------------+-----+---------+------------+-----------+--------- . . o3x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4/3*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 -------------------+-----+---------+------------+-----------+--------- . o3/2o3x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3/2o . x4/3*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3x4x4/3*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 -------------------+-----+---------+------------+-----------+--------- o3/2o3/2o3x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3/2o3/2o . x4/3*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3/2o3x4x4/3*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
    3/2 3/2 3/2  
   x---o---o---o 
  4 \ / 4        
     x           
o3/2o3/2o3/2x4x4*c . . . . . | 160 | 4 4 | 6 6 4 | 4 4 6 | 1 1 4 -------------------+-----+---------+------------+-----------+--------- . . . x . | 2 | 320 * | 3 0 1 | 3 0 3 | 1 0 3 . . . . x | 2 | * 320 | 0 3 1 | 0 3 3 | 0 1 3 -------------------+-----+---------+------------+-----------+--------- . . o3/2x . | 3 | 3 0 | 320 * * | 2 0 1 | 1 0 2 . . o . x4*c | 4 | 0 4 | * 240 * | 0 2 1 | 0 1 2 . . . x4x | 8 | 4 4 | * * 80 | 0 0 3 | 0 0 3 -------------------+-----+---------+------------+-----------+--------- . o3/2o3/2x . ♦ 4 | 6 0 | 4 0 0 | 160 * * | 1 0 1 . o3/2o . x4*c ♦ 8 | 0 12 | 0 6 0 | * 80 * | 0 1 1 . . o3/2x4x4*c ♦ 24 | 24 24 | 8 6 6 | * * 40 | 0 0 2 -------------------+-----+---------+------------+-----------+--------- o3/2o3/2o3/2x . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 | 32 * * o3/2o3/2o . x4*c ♦ 16 | 0 32 | 0 24 0 | 0 8 0 | * 10 * . o3/2o3/2x4x4*c ♦ 64 | 96 96 | 64 48 24 | 16 8 8 | * * 10
| © 2004-2025 | top of page |