| Acronym | sphiddix | |||||||||||||||||||||
| Name | small prismatohecatonicosadishexacosachoron | |||||||||||||||||||||
| Circumradius | sqrt[25+10 sqrt(5)] = 6.881910 | |||||||||||||||||||||
| Colonel of regiment | (is itself locally convex
– uniform polychoral members: 
 | |||||||||||||||||||||
| Face vector | 7200, 18000, 12240, 2040 | |||||||||||||||||||||
| Confer | 
 | |||||||||||||||||||||
| External links |     | 
As abstract polytope sphiddix is isomorphic to giphiddix, thereby replacing pentagrams by pentagons, resp. stip by pip and siid by giid
Incidence matrix according to Dynkin symbol
     x    
   3 |    
     x    
  3 / \ 3 
   x---o  
    5/2   
x3x3x5/2o3*b . . . . | 7200 | 1 2 2 | 2 2 2 1 1 | 2 1 1 1 -------------+------+----------------+--------------------------+---------------- x . . . | 2 | 3600 * * | 2 2 0 0 0 | 2 1 1 0 . x . . | 2 | * 7200 * | 1 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 7200 | 0 1 1 0 1 | 1 0 1 1 -------------+------+----------------+--------------------------+---------------- x3x . . | 6 | 3 3 0 | 2400 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 3600 * * * | 1 0 1 0 . x3x . | 6 | 0 3 3 | * * 2400 * * | 1 0 0 1 . x . o3*b | 3 | 0 3 0 | * * * 2400 * | 0 1 0 1 . . x5/2o | 5 | 0 0 5 | * * * * 1440 | 0 0 1 1 -------------+------+----------------+--------------------------+---------------- x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 0 | 600 * * * x3x . o3*b ♦ 12 | 6 12 0 | 4 0 0 4 0 | * 600 * * x . x5/2o ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 720 * . x3x5/2o3*b ♦ 60 | 0 60 60 | 0 0 20 20 12 | * * * 120
     x     
   3 |     
     x     
  3 / \ 3/2
   x---o   
    5/3    
x3x3x5/3o3/2*b . . . . | 7200 | 1 2 2 | 2 2 2 1 1 | 2 1 1 1 ---------------+------+----------------+--------------------------+---------------- x . . . | 2 | 3600 * * | 2 2 0 0 0 | 2 1 1 0 . x . . | 2 | * 7200 * | 1 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 7200 | 0 1 1 0 1 | 1 0 1 1 ---------------+------+----------------+--------------------------+---------------- x3x . . | 6 | 3 3 0 | 2400 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 3600 * * * | 1 0 1 0 . x3x . | 6 | 0 3 3 | * * 2400 * * | 1 0 0 1 . x . o3/2*b | 3 | 0 3 0 | * * * 2400 * | 0 1 0 1 . . x5/3o | 5 | 0 0 5 | * * * * 1440 | 0 0 1 1 ---------------+------+----------------+--------------------------+---------------- x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 0 | 600 * * * x3x . o3/2*b ♦ 12 | 6 12 0 | 4 0 0 4 0 | * 600 * * x . x5/3o ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 720 * . x3x5/3o3/2*b ♦ 60 | 0 60 60 | 0 0 20 20 12 | * * * 120
x3x3o5β
both( . . . . ) | 7200 |    1    2    2 |    2    1    1    2    2 |   1   1   1   2
----------------+------+----------------+--------------------------+----------------
both( x . . . ) |    2 | 3600    *    * |    2    0    0    2    0 |   1   1   0   2
both( . x . . ) |    2 |    * 7200    * |    1    1    0    0    1 |   1   0   1   1
sefa( . . o5β ) |    2 |    *    * 7200 |    0    0    1    1    1 |   0   1   1   1
----------------+------+----------------+--------------------------+----------------
both( x3x . . ) |    6 |    3    3    0 | 2400    *    *    *    * |   1   0   0   1
both( . x3o . ) |    3 |    0    3    0 |    * 2400    *    *    * |   1   0   1   0
      . . o5β   ♦    5 |    0    0    5 |    *    * 1440    *    * |   0   1   1   0
sefa( x 2 o5β ) |    4 |    2    0    2 |    *    *    * 3600    * |   0   1   0   1
sefa( . x3o5β ) |    6 |    0    3    3 |    *    *    *    * 2400 |   0   0   1   1
----------------+------+----------------+--------------------------+----------------
both( x3x3o . ) ♦   12 |    6   12    0 |    4    4    0    0    0 | 600   *   *   *
      x 2 o5β   ♦   10 |    5    0   10 |    0    0    2    5    0 |   * 720   *   *
      . x3o5β   ♦   60 |    0   60   60 |    0   20   12    0   20 |   *   * 120   *
sefa( x3x3o5β ) ♦   24 |   12   12   12 |    4    0    0    6    4 |   *   *   * 600
starting figure: x3x3o5x
| © 2004-2025 | top of page |