Acronym ... Name spript+16 2thah (?) Circumradius sqrt[2+sqrt(2)] = 1.847759 Coordinates ((1+sqrt(2))/2, (1+sqrt(2))/2, 1/2, 1/2)   & all permutations, all changes of sign General of army srit Colonel of regiment srit Confer spript   2thah

This Grünbaumian polychoron can be seen as a union of spript plus the 16 pseudo-thah filled in as doubled up copies, in fact, these double-covers unite as 2thah, thereby letting the surface cross over at this former pseudo-cells. And indeed, the vertex figure is an asymmetric faceting of the vertex figure of srit. Therefore there can be blended 2 mirror symmetric such, and, correspondingly, the vertices of this polychoron coincide by pairs.

As abstract polytope spript+16 2thah is isomorphic to gapript+16 2thah, thereby replacing octagons by octagrams, resp. by replacing tic by quith and replacing op by stop.

Incidence matrix according to Dynkin symbol

```x4x3o3/2x

. . .   . | 192 |  1   2   2 |  2  2  1  2  1 | 1  2  1  1
----------+-----+------------+----------------+-----------
x . .   . |   2 | 96   *   * |  2  2  0  0  0 | 1  2  1  0
. x .   . |   2 |  * 192   * |  1  0  1  1  0 | 1  1  0  1
. . .   x |   2 |  *   * 192 |  0  1  0  1  1 | 0  1  1  1
----------+-----+------------+----------------+-----------
x4x .   . |   8 |  4   4   0 | 48  *  *  *  * | 1  1  0  0
x . .   x |   4 |  2   0   2 |  * 96  *  *  * | 0  1  1  0
. x3o   . |   3 |  0   3   0 |  *  * 64  *  * | 1  0  0  1
. x .   x |   4 |  0   2   2 |  *  *  * 96  * | 0  1  0  1
. . o3/2x |   3 |  0   0   3 |  *  *  *  * 64 | 0  0  1  1
----------+-----+------------+----------------+-----------
x4x3o   . ♦  24 | 12  24   0 |  6  0  8  0  0 | 8  *  *  *
x4x .   x ♦  16 |  8   8   8 |  2  4  0  4  0 | * 24  *  *
x . o3/2x ♦   6 |  3   0   6 |  0  3  0  0  2 | *  * 32  *
. x3o3/2x ♦  12 |  0  12  12 |  0  0  4  6  4 | *  *  * 16
```

```x4x3/2o3x

. .   . . | 192 |  1   2   2 |  2  2  1  2  1 | 1  2  1  1
----------+-----+------------+----------------+-----------
x .   . . |   2 | 96   *   * |  2  2  0  0  0 | 1  2  1  0
. x   . . |   2 |  * 192   * |  1  0  1  1  0 | 1  1  0  1
. .   . x |   2 |  *   * 192 |  0  1  0  1  1 | 0  1  1  1
----------+-----+------------+----------------+-----------
x4x   . . |   8 |  4   4   0 | 48  *  *  *  * | 1  1  0  0
x .   . x |   4 |  2   0   2 |  * 96  *  *  * | 0  1  1  0
. x3/2o . |   3 |  0   3   0 |  *  * 64  *  * | 1  0  0  1
. x   . x |   4 |  0   2   2 |  *  *  * 96  * | 0  1  0  1
. .   o3x |   3 |  0   0   3 |  *  *  *  * 64 | 0  0  1  1
----------+-----+------------+----------------+-----------
x4x3/2o . ♦  24 | 12  24   0 |  6  0  8  0  0 | 8  *  *  *
x4x   . x ♦  16 |  8   8   8 |  2  4  0  4  0 | * 24  *  *
x .   o3x ♦   6 |  3   0   6 |  0  3  0  0  2 | *  * 32  *
. x3/2o3x ♦  12 |  0  12  12 |  0  0  4  6  4 | *  *  * 16
```