| Acronym | tathibbit |
| Name | triangular-trihexagonal duoprismatic tetracomb |
Incidence matrix according to Dynkin symbol
((x3o6o)) ((o3x6o)) (N → ∞) . . . . . . | 3N | 6 4 | 6 24 2 2 | 24 12 12 | 12 12 ------------+----+-------+-------------+-----------+------ x . . . . . | 2 | 9N * | 2 4 0 0 | 8 2 2 | 4 4 . . . . x . | 2 | * 6N | 0 6 1 1 | 6 6 6 | 6 6 ------------+----+-------+-------------+-----------+------ x3o . . . . | 3 | 3 0 | 6N * * * | 4 0 0 | 2 2 x . . . x . | 4 | 2 2 | * 18N * * | 2 1 1 | 2 2 . . . o3x . | 3 | 0 3 | * * 2N * | 0 6 0 | 6 0 . . . . x6o | 6 | 0 6 | * * * N | 0 0 6 | 0 6 ------------+----+-------+-------------+-----------+------ x3o . . x . ♦ 6 | 6 3 | 2 3 0 0 | 12N * * | 1 1 x . . o3x . ♦ 6 | 3 6 | 0 3 2 0 | * 6N * | 2 0 x . . . x6o ♦ 12 | 6 12 | 0 6 0 2 | * * 3N | 0 2 ------------+----+-------+-------------+-----------+------ x3o . o3x . ♦ 9 | 9 9 | 3 9 3 0 | 3 3 0 | 4N * x3o . . x6o ♦ 18 | 18 18 | 6 18 0 3 | 6 0 3 | * 2N
((o3x6o)) ((x3o3o3*d)) (N → ∞) . . . . . . | 3N | 4 6 | 2 2 24 3 3 | 12 12 12 12 | 6 6 6 6 ---------------+----+-------+----------------+-------------+---------- . x . . . . | 2 | 6N * | 1 1 6 0 0 | 6 6 3 3 | 3 3 3 3 . . . x . . | 2 | * 9N | 0 0 4 1 1 | 2 2 4 4 | 2 2 2 2 ---------------+----+-------+----------------+-------------+---------- o3x . . . . | 3 | 3 0 | 2N * * * * | 6 0 0 0 | 3 3 0 0 . x6o . . . | 6 | 6 0 | * N * * * | 0 6 0 0 | 0 0 3 3 . x . x . . | 4 | 2 2 | * * 18N * * | 1 1 1 1 | 1 1 1 1 . . . x3o . | 3 | 0 3 | * * * 3N * | 0 0 4 0 | 2 0 2 0 . . . x . o3*d | 3 | 0 3 | * * * * 3N | 0 0 0 4 | 0 2 0 2 ---------------+----+-------+----------------+-------------+---------- o3x . x . . ♦ 6 | 6 3 | 2 0 3 0 0 | 6N * * * | 1 1 0 0 . x6o x . . ♦ 12 | 12 6 | 0 2 6 0 0 | * 3N * * | 0 0 1 1 . x . x3o . ♦ 6 | 3 6 | 0 0 3 2 0 | * * 6N * | 1 0 1 0 . x . x . o3*d ♦ 6 | 3 6 | 0 0 3 0 2 | * * * 6N | 0 1 0 1 ---------------+----+-------+----------------+-------------+---------- o3x . x3o . ♦ 9 | 9 9 | 3 0 9 3 0 | 3 0 3 0 | 2N * * * o3x . x . o3*d ♦ 9 | 9 9 | 3 0 9 0 3 | 3 0 0 3 | * 2N * * . x6o x3o . ♦ 18 | 18 18 | 0 3 18 6 0 | 0 3 6 0 | * * N * . x6o x . o3*d ♦ 18 | 18 18 | 0 3 18 0 6 | 0 3 0 6 | * * * N
((x3o6o)) ((x3x3o3*d)) (N → ∞) . . . . . . | 3N | 6 2 2 | 6 12 12 2 1 1 | 12 12 12 6 6 | 12 6 6 ---------------+----+----------+----------------+----------------+--------- x . . . . . | 2 | 9N * * | 2 2 2 0 0 0 | 4 4 2 1 1 | 4 2 2 . . . x . . | 2 | * 3N * | 0 6 0 1 1 0 | 6 0 6 6 0 | 6 6 0 . . . . x . | 2 | * * 3N | 0 0 6 1 0 1 | 0 6 6 0 6 | 6 0 6 ---------------+----+----------+----------------+----------------+--------- x3o . . . . | 3 | 3 0 0 | 6N * * * * * | 2 2 0 0 0 | 2 1 1 x . . x . . | 4 | 2 2 0 | * 9N * * * * | 2 0 1 1 0 | 2 2 0 x . . . x . | 4 | 2 0 2 | * * 9N * * * | 0 2 1 0 1 | 2 0 2 . . . x3x . | 6 | 0 3 3 | * * * N * * | 0 0 6 0 0 | 6 0 0 . . . x . o3*d | 3 | 0 3 0 | * * * * N * | 0 0 0 6 0 | 0 6 0 . . . . x3o | 3 | 0 0 3 | * * * * * N | 0 0 0 0 6 | 0 0 6 ---------------+----+----------+----------------+----------------+--------- x3o . x . . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | 6N * * * * | 1 1 0 x3o . . x . ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 6N * * * | 1 0 1 x . . x3x . ♦ 12 | 6 6 6 | 0 3 3 2 0 0 | * * 3N * * | 2 0 0 x . . x . o3*d ♦ 6 | 3 6 0 | 0 3 0 0 2 0 | * * * 3N * | 0 2 0 x . . . x3o ♦ 6 | 3 0 6 | 0 0 3 0 0 2 | * * * * 3N | 0 0 2 ---------------+----+----------+----------------+----------------+--------- x3o . x3x . ♦ 18 | 18 9 9 | 6 9 9 3 0 0 | 3 3 3 0 0 | 2N * * x3o . x . o3*d ♦ 9 | 9 9 0 | 3 9 0 0 3 0 | 3 0 0 3 0 | * 2N * x3o . . x3o ♦ 9 | 9 0 9 | 3 0 9 0 0 3 | 0 3 0 0 3 | * * 2N
((x3o3o3*a)) ((x3x3o3*d)) (N → ∞) . . . . . . | 3N | 6 2 2 | 3 3 12 12 2 1 1 | 6 6 6 6 12 6 6 | 6 3 3 6 3 3 ------------------+----+----------+-------------------+----------------------+------------ x . . . . . | 2 | 9N * * | 1 1 2 2 0 0 0 | 2 2 2 2 2 1 1 | 2 1 1 2 1 1 . . . x . . | 2 | * 3N * | 0 0 6 0 1 1 0 | 3 0 3 0 6 6 0 | 3 3 0 3 3 0 . . . . x . | 2 | * * 3N | 0 0 0 6 1 0 1 | 0 3 0 3 6 0 6 | 3 0 3 3 0 3 ------------------+----+----------+-------------------+----------------------+------------ x3o . . . . | 3 | 3 0 0 | 3N * * * * * * | 2 2 0 0 0 0 0 | 2 1 1 0 0 0 x . o3*a . . . | 3 | 3 0 0 | * 3N * * * * * | 0 0 2 2 0 0 0 | 0 0 0 2 1 1 x . . x . . | 4 | 2 2 0 | * * 9N * * * * | 1 0 1 0 1 1 0 | 1 1 0 1 1 0 x . . . x . | 4 | 2 0 2 | * * * 9N * * * | 0 1 0 1 1 0 1 | 1 0 1 1 0 1 . . . x3x . | 6 | 0 3 3 | * * * * N * * | 0 0 0 0 6 0 0 | 3 0 0 3 0 0 . . . x . o3*d | 3 | 0 3 0 | * * * * * N * | 0 0 0 0 0 6 0 | 0 3 0 0 3 0 . . . . x3o | 3 | 0 0 3 | * * * * * * N | 0 0 0 0 0 0 6 | 0 0 3 0 0 3 ------------------+----+----------+-------------------+----------------------+------------ x3o . x . . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 0 | 3N * * * * * * | 1 1 0 0 0 0 x3o . . x . ♦ 6 | 6 0 3 | 2 0 0 3 0 0 0 | * 3N * * * * * | 1 0 1 0 0 0 x . o3*a x . . ♦ 6 | 6 3 0 | 0 2 3 0 0 0 0 | * * 3N * * * * | 0 0 0 1 1 0 x . o3*a . x . ♦ 6 | 6 0 3 | 0 2 0 3 0 0 0 | * * * 3N * * * | 0 0 0 1 0 1 x . . x3x . ♦ 12 | 6 6 6 | 0 0 3 3 2 0 0 | * * * * 3N * * | 1 0 0 1 0 0 x . . x . o3*d ♦ 6 | 3 6 0 | 0 0 3 0 0 2 0 | * * * * * 3N * | 0 1 0 0 1 0 x . . . x3o ♦ 6 | 3 0 6 | 0 0 0 3 0 0 2 | * * * * * * 3N | 0 0 1 0 0 1 ------------------+----+----------+-------------------+----------------------+------------ x3o . x3x . ♦ 18 | 18 9 9 | 6 0 9 9 3 0 0 | 3 3 0 0 3 0 0 | N * * * * * x3o . x . o3*d ♦ 9 | 9 9 0 | 3 0 9 0 0 3 0 | 3 0 0 0 0 3 0 | * N * * * * x3o . . x3o ♦ 9 | 9 0 9 | 3 0 0 9 0 0 3 | 0 3 0 0 0 0 3 | * * N * * * x . o3*a x3x . ♦ 18 | 18 9 9 | 0 6 9 9 3 0 0 | 0 0 3 3 3 0 0 | * * * N * * x . o3*a x . o3*d ♦ 9 | 9 9 0 | 0 3 9 0 0 3 0 | 0 0 3 0 0 3 0 | * * * * N * x . o3*a . x3o ♦ 9 | 9 0 9 | 0 3 0 9 0 0 3 | 0 0 0 3 0 0 3 | * * * * * N
© 2004-2026 | top of page |