Acronym tathibbit
Name triangular-trihexagonal duoprismatic tetracomb

Incidence matrix according to Dynkin symbol

((x3o6o)) ((o3x6o))   (N → ∞)

. . . . . . | 3N |  6  4 |  6  24  2 2 |  24 12 12 | 12 12
------------+----+-------+-------------+-----------+------
x . . . . . |  2 | 9N  * |  2   4  0 0 |   8  2  2 |  4  4
. . . . x . |  2 |  * 6N |  0   6  1 1 |   6  6  6 |  6  6
------------+----+-------+-------------+-----------+------
x3o . . . . |  3 |  3  0 | 6N   *  * * |   4  0  0 |  2  2
x . . . x . |  4 |  2  2 |  * 18N  * * |   2  1  1 |  2  2
. . . o3x . |  3 |  0  3 |  *   * 2N * |   0  6  0 |  6  0
. . . . x6o |  6 |  0  6 |  *   *  * N |   0  0  6 |  0  6
------------+----+-------+-------------+-----------+------
x3o . . x .   6 |  6  3 |  2   3  0 0 | 12N  *  * |  1  1
x . . o3x .   6 |  3  6 |  0   3  2 0 |   * 6N  * |  2  0
x . . . x6o  12 |  6 12 |  0   6  0 2 |   *  * 3N |  0  2
------------+----+-------+-------------+-----------+------
x3o . o3x .   9 |  9  9 |  3   9  3 0 |   3  3  0 | 4N  *
x3o . . x6o  18 | 18 18 |  6  18  0 3 |   6  0  3 |  * 2N

((o3x6o)) ((x3o3o3*d))   (N → ∞)

. . . . . .    | 3N |  4  6 |  2 2  24  3  3 | 12 12 12 12 |  6  6 6 6
---------------+----+-------+----------------+-------------+----------
. x . . . .    |  2 | 6N  * |  1 1   6  0  0 |  6  6  3  3 |  3  3 3 3
. . . x . .    |  2 |  * 9N |  0 0   4  1  1 |  2  2  4  4 |  2  2 2 2
---------------+----+-------+----------------+-------------+----------
o3x . . . .    |  3 |  3  0 | 2N *   *  *  * |  6  0  0  0 |  3  3 0 0
. x6o . . .    |  6 |  6  0 |  * N   *  *  * |  0  6  0  0 |  0  0 3 3
. x . x . .    |  4 |  2  2 |  * * 18N  *  * |  1  1  1  1 |  1  1 1 1
. . . x3o .    |  3 |  0  3 |  * *   * 3N  * |  0  0  4  0 |  2  0 2 0
. . . x . o3*d |  3 |  0  3 |  * *   *  * 3N |  0  0  0  4 |  0  2 0 2
---------------+----+-------+----------------+-------------+----------
o3x . x . .      6 |  6  3 |  2 0   3  0  0 | 6N  *  *  * |  1  1 0 0
. x6o x . .     12 | 12  6 |  0 2   6  0  0 |  * 3N  *  * |  0  0 1 1
. x . x3o .      6 |  3  6 |  0 0   3  2  0 |  *  * 6N  * |  1  0 1 0
. x . x . o3*d   6 |  3  6 |  0 0   3  0  2 |  *  *  * 6N |  0  1 0 1
---------------+----+-------+----------------+-------------+----------
o3x . x3o .      9 |  9  9 |  3 0   9  3  0 |  3  0  3  0 | 2N  * * *
o3x . x . o3*d   9 |  9  9 |  3 0   9  0  3 |  3  0  0  3 |  * 2N * *
. x6o x3o .     18 | 18 18 |  0 3  18  6  0 |  0  3  6  0 |  *  * N *
. x6o x . o3*d  18 | 18 18 |  0 3  18  0  6 |  0  3  0  6 |  *  * * N

((x3o6o)) ((x3x3o3*d))   (N → ∞)

. . . . . .    | 3N |  6  2  2 |  6 12 12 2 1 1 | 12 12 12  6  6 | 12  6  6
---------------+----+----------+----------------+----------------+---------
x . . . . .    |  2 | 9N  *  * |  2  2  2 0 0 0 |  4  4  2  1  1 |  4  2  2
. . . x . .    |  2 |  * 3N  * |  0  6  0 1 1 0 |  6  0  6  6  0 |  6  6  0
. . . . x .    |  2 |  *  * 3N |  0  0  6 1 0 1 |  0  6  6  0  6 |  6  0  6
---------------+----+----------+----------------+----------------+---------
x3o . . . .    |  3 |  3  0  0 | 6N  *  * * * * |  2  2  0  0  0 |  2  1  1
x . . x . .    |  4 |  2  2  0 |  * 9N  * * * * |  2  0  1  1  0 |  2  2  0
x . . . x .    |  4 |  2  0  2 |  *  * 9N * * * |  0  2  1  0  1 |  2  0  2
. . . x3x .    |  6 |  0  3  3 |  *  *  * N * * |  0  0  6  0  0 |  6  0  0
. . . x . o3*d |  3 |  0  3  0 |  *  *  * * N * |  0  0  0  6  0 |  0  6  0
. . . . x3o    |  3 |  0  0  3 |  *  *  * * * N |  0  0  0  0  6 |  0  0  6
---------------+----+----------+----------------+----------------+---------
x3o . x . .      6 |  6  3  0 |  2  3  0 0 0 0 | 6N  *  *  *  * |  1  1  0
x3o . . x .      6 |  6  0  3 |  2  0  3 0 0 0 |  * 6N  *  *  * |  1  0  1
x . . x3x .     12 |  6  6  6 |  0  3  3 2 0 0 |  *  * 3N  *  * |  2  0  0
x . . x . o3*d   6 |  3  6  0 |  0  3  0 0 2 0 |  *  *  * 3N  * |  0  2  0
x . . . x3o      6 |  3  0  6 |  0  0  3 0 0 2 |  *  *  *  * 3N |  0  0  2
---------------+----+----------+----------------+----------------+---------
x3o . x3x .     18 | 18  9  9 |  6  9  9 3 0 0 |  3  3  3  0  0 | 2N  *  *
x3o . x . o3*d   9 |  9  9  0 |  3  9  0 0 3 0 |  3  0  0  3  0 |  * 2N  *
x3o . . x3o      9 |  9  0  9 |  3  0  9 0 0 3 |  0  3  0  0  3 |  *  * 2N

((x3o3o3*a)) ((x3x3o3*d))   (N → ∞)

. . .    . . .    | 3N |  6  2  2 |  3  3 12 12 2 1 1 |  6  6  6  6 12  6  6 | 6 3 3 6 3 3
------------------+----+----------+-------------------+----------------------+------------
x . .    . . .    |  2 | 9N  *  * |  1  1  2  2 0 0 0 |  2  2  2  2  2  1  1 | 2 1 1 2 1 1
. . .    x . .    |  2 |  * 3N  * |  0  0  6  0 1 1 0 |  3  0  3  0  6  6  0 | 3 3 0 3 3 0
. . .    . x .    |  2 |  *  * 3N |  0  0  0  6 1 0 1 |  0  3  0  3  6  0  6 | 3 0 3 3 0 3
------------------+----+----------+-------------------+----------------------+------------
x3o .    . . .    |  3 |  3  0  0 | 3N  *  *  * * * * |  2  2  0  0  0  0  0 | 2 1 1 0 0 0
x . o3*a . . .    |  3 |  3  0  0 |  * 3N  *  * * * * |  0  0  2  2  0  0  0 | 0 0 0 2 1 1
x . .    x . .    |  4 |  2  2  0 |  *  * 9N  * * * * |  1  0  1  0  1  1  0 | 1 1 0 1 1 0
x . .    . x .    |  4 |  2  0  2 |  *  *  * 9N * * * |  0  1  0  1  1  0  1 | 1 0 1 1 0 1
. . .    x3x .    |  6 |  0  3  3 |  *  *  *  * N * * |  0  0  0  0  6  0  0 | 3 0 0 3 0 0
. . .    x . o3*d |  3 |  0  3  0 |  *  *  *  * * N * |  0  0  0  0  0  6  0 | 0 3 0 0 3 0
. . .    . x3o    |  3 |  0  0  3 |  *  *  *  * * * N |  0  0  0  0  0  0  6 | 0 0 3 0 0 3
------------------+----+----------+-------------------+----------------------+------------
x3o .    x . .      6 |  6  3  0 |  2  0  3  0 0 0 0 | 3N  *  *  *  *  *  * | 1 1 0 0 0 0
x3o .    . x .      6 |  6  0  3 |  2  0  0  3 0 0 0 |  * 3N  *  *  *  *  * | 1 0 1 0 0 0
x . o3*a x . .      6 |  6  3  0 |  0  2  3  0 0 0 0 |  *  * 3N  *  *  *  * | 0 0 0 1 1 0
x . o3*a . x .      6 |  6  0  3 |  0  2  0  3 0 0 0 |  *  *  * 3N  *  *  * | 0 0 0 1 0 1
x . .    x3x .     12 |  6  6  6 |  0  0  3  3 2 0 0 |  *  *  *  * 3N  *  * | 1 0 0 1 0 0
x . .    x . o3*d   6 |  3  6  0 |  0  0  3  0 0 2 0 |  *  *  *  *  * 3N  * | 0 1 0 0 1 0
x . .    . x3o      6 |  3  0  6 |  0  0  0  3 0 0 2 |  *  *  *  *  *  * 3N | 0 0 1 0 0 1
------------------+----+----------+-------------------+----------------------+------------
x3o .    x3x .     18 | 18  9  9 |  6  0  9  9 3 0 0 |  3  3  0  0  3  0  0 | N * * * * *
x3o .    x . o3*d   9 |  9  9  0 |  3  0  9  0 0 3 0 |  3  0  0  0  0  3  0 | * N * * * *
x3o .    . x3o      9 |  9  0  9 |  3  0  0  9 0 0 3 |  0  3  0  0  0  0  3 | * * N * * *
x . o3*a x3x .     18 | 18  9  9 |  0  6  9  9 3 0 0 |  0  0  3  3  3  0  0 | * * * N * *
x . o3*a x . o3*d   9 |  9  9  0 |  0  3  9  0 0 3 0 |  0  0  3  0  0  3  0 | * * * * N *
x . o3*a . x3o      9 |  9  0  9 |  0  3  0  9 0 0 3 |  0  0  0  3  0  0  3 | * * * * * N

© 2004-2026
top of page