Acronym thibbit
Name triangular-hexagonal duoprismatic tetracomb

Incidence matrix according to Dynkin symbol

((x3o6o)) ((o3o6x))   (N → ∞)

. . . . . . | 2N |  6  3 |  6 18 3 | 18 18 | 18
------------+----+-------+---------+-------+---
x . . . . . |  2 | 6N  * |  2  3 0 |  6  3 |  6
. . . . . x |  2 |  * 3N |  0  6 2 |  6 12 | 12
------------+----+-------+---------+-------+---
x3o . . . . |  3 |  3  0 | 4N  * * |  3  0 |  3
x . . . . x |  4 |  2  2 |  * 9N * |  2  2 |  4
. . . . o6x |  6 |  0  6 |  *  * N |  0  6 |  6
------------+----+-------+---------+-------+---
x3o . . . x   6 |  6  3 |  2  3 0 | 6N  * |  2
x . . . o6x  12 |  6 12 |  0  6 2 |  * 3N |  2
------------+----+-------+---------+-------+---
x3o . . o6x  18 | 18 18 |  6 18 3 |  6  3 | 2N

((x3x6o)) ((x3o6o))   (N → ∞);)

. . . . . . | 6N |  1  2   6 |  2  6 1  12   6 | 12  6  6  12 | 12  6
------------+----+-----------+-----------------+--------------+------
x . . . . . |  2 | 3N  *   * |  2  6 0   0   0 | 12  6  0   0 | 12  0
. x . . . . |  2 |  * 6N   * |  1  0 1   6   0 |  6  0  6   6 |  6  6
. . . x . . |  2 |  *  * 18N |  0  1 0   2   2 |  2  2  1   4 |  4  2
------------+----+-----------+-----------------+--------------+------
x3x . . . . |  6 |  3  3   0 | 2N  * *   *   * |  6  0  0   0 |  6  0
x . . x . . |  4 |  2  0   2 |  * 9N *   *   * |  2  2  0   0 |  4  0
. x6o . . . |  6 |  0  6   0 |  *  * N   *   * |  0  0  6   0 |  0  6
. x . x . . |  4 |  0  2   2 |  *  * * 18N   * |  1  0  1   2 |  2  2
. . . x3o . |  3 |  0  0   3 |  *  * *   * 12N |  0  1  0   2 |  2  1
------------+----+-----------+-----------------+--------------+------
x3x . x . .  12 |  6  6   6 |  2  3 0   3   0 | 6N  *  *   * |  2  0
x . . x3o .   6 |  3  0   6 |  0  3 0   0   2 |  * 6N  *   * |  2  0
. x6o x . .  12 |  0 12   6 |  0  0 2   6   0 |  *  * 3N   * |  0  2
. x . x3o .   6 |  0  3   6 |  0  0 0   3   2 |  *  *  * 12N |  1  1
------------+----+-----------+-----------------+--------------+------
x3x . x3o .  18 |  9  9  18 |  3  9 0   9   6 |  3  3  0   3 | 4N  *
. x6o x3o .  18 |  0 18  18 |  0  0 3  18   6 |  0  0  3   6 |  * 2N

((o3o6x)) ((x3o3o3*d))   (N → ∞)

. . . . . .    | 2N |  3  6 | 3 18  3  3 | 18  9  9 | 9 9
---------------+----+-------+------------+----------+----
. . x . . .    |  2 | 3N  * | 2  6  0  0 | 12  3  3 | 6 6
. . . x . .    |  2 |  * 6N | 0  3  1  1 |  3  3  3 | 3 3
---------------+----+-------+------------+----------+----
. o6x . . .    |  6 |  6  0 | N  *  *  * |  6  0  0 | 3 3
. . x x . .    |  4 |  2  2 | * 9N  *  * |  2  1  1 | 2 2
. . . x3o .    |  3 |  0  3 | *  * 2N  * |  0  3  0 | 3 0
. . . x . o3*d |  3 |  0  3 | *  *  * 2N |  0  0  3 | 0 3
---------------+----+-------+------------+----------+----
. o6x x . .     12 | 12  6 | 2  6  0  0 | 3N  *  * | 1 1
. . x x3o .      6 |  3  6 | 0  3  2  0 |  * 3N  * | 2 0
. . x x . o3*d   6 |  3  6 | 0  3  0  2 |  *  * 3N | 0 2
---------------+----+-------+------------+----------+----
. o6x x3o .     18 | 18 18 | 3 18  6  0 |  3  6  0 | N *
. o6x x . o3*d  18 | 18 18 | 3 18  0  6 |  3  0  6 | * N

((x3x6o)) ((x3o3o3*d))   (N → ∞)

. . . . . .    | 6N |  1  2   6 |  2  6 1  12  3  3 | 12  3  3  6  6  6 |  6  6 3 3
---------------+----+-----------+-------------------+-------------------+----------
x . . . . .    |  2 | 3N  *   * |  2  6 0   0  0  0 | 12  3  3  0  0  0 |  6  6 0 0
. x . . . .    |  2 |  * 6N   * |  1  0 1   6  0  0 |  6  0  0  6  3  3 |  3  3 3 3
. . . x . .    |  2 |  *  * 18N |  0  1 0   2  1  1 |  2  1  1  1  2  2 |  2  2 1 1
---------------+----+-----------+-------------------+-------------------+----------
x3x . . . .    |  6 |  3  3   0 | 2N  * *   *  *  * |  6  0  0  0  0  0 |  3  3 0 0
x . . x . .    |  4 |  2  0   2 |  * 9N *   *  *  * |  2  1  1  0  0  0 |  2  2 0 0
. x6o . . .    |  6 |  0  6   0 |  *  * N   *  *  * |  0  0  0  6  0  0 |  0  0 3 3
. x . x . .    |  4 |  0  2   2 |  *  * * 18N  *  * |  1  0  0  1  1  1 |  1  1 1 1
. . . x3o .    |  3 |  0  0   3 |  *  * *   * 6N  * |  0  1  0  0  2  0 |  2  0 1 0
. . . x . o3*d |  3 |  0  0   3 |  *  * *   *  * 6N |  0  0  1  0  0  2 |  0  2 0 1
---------------+----+-----------+-------------------+-------------------+----------
x3x . x . .     12 |  6  6   6 |  2  3 0   3  0  0 | 6N  *  *  *  *  * |  1  1 0 0
x . . x3o .      6 |  3  0   6 |  0  3 0   0  2  0 |  * 3N  *  *  *  * |  2  0 0 0
x . . x . o3*d   6 |  3  0   6 |  0  3 0   0  0  2 |  *  * 3N  *  *  * |  0  2 0 0
. x6o x . .     12 |  0 12   6 |  0  0 2   6  0  0 |  *  *  * 3N  *  * |  0  0 1 1
. x . x3o .      6 |  0  3   6 |  0  0 0   3  2  0 |  *  *  *  * 6N  * |  1  0 1 0
. x . x . o3*d   6 |  0  3   6 |  0  0 0   3  0  2 |  *  *  *  *  * 6N |  0  1 0 1
---------------+----+-----------+-------------------+-------------------+----------
x3x . x3o .     18 |  9  9  18 |  3  9 0   9  6  0 |  3  3  0  0  3  0 | 2N  * * *
x3x . x . o3*d  18 |  9  9  18 |  3  9 0   9  0  6 |  3  0  3  0  0  3 |  * 2N * *
. x6o x3o .     18 |  0 18  18 |  0  0 3  18  6  0 |  0  0  0  3  6  0 |  *  * N *
. x6o x . o3*d  18 |  0 18  18 |  0  0 3  18  0  6 |  0  0  0  3  0  6 |  *  * * N

((x3o6o)) ((x3x3x3*d))   (N → ∞)

. . . . . .    | 6N |   6  1  1  1 |   6  6  6  6 1 1 1 |  6  6  6  6  6  6 |  6  6  6
---------------+----+--------------+--------------------+-------------------+---------
x . . . . .    |  2 | 18N  *  *  * |   2  1  1  1 0 0 0 |  2  2  2  1  1  1 |  2  2  2
. . . x . .    |  2 |   * 3N  *  * |   0  6  0  0 1 1 0 |  6  0  0  6  6  0 |  6  6  0
. . . . x .    |  2 |   *  * 3N  * |   0  0  6  0 1 0 1 |  0  6  0  6  0  6 |  6  0  6
. . . . . x    |  2 |   *  *  * 3N |   0  0  0  6 0 1 1 |  0  0  6  0  6  6 |  0  6  6
---------------+----+--------------+--------------------+-------------------+---------
x3o . . . .    |  3 |   3  0  0  0 | 12N  *  *  * * * * |  1  1  1  0  0  0 |  1  1  1
x . . x . .    |  4 |   2  2  0  0 |   * 9N  *  * * * * |  2  0  0  1  1  0 |  2  2  0
x . . . x .    |  4 |   2  0  2  0 |   *  * 9N  * * * * |  0  2  0  1  0  1 |  2  0  2
x . . . . x    |  4 |   2  0  0  2 |   *  *  * 9N * * * |  0  0  2  0  1  1 |  0  2  2
. . . x3x .    |  6 |   0  3  3  0 |   *  *  *  * N * * |  0  0  0  6  0  0 |  6  0  0
. . . x . x3*d |  6 |   0  3  0  3 |   *  *  *  * * N * |  0  0  0  0  6  0 |  0  6  0
. . . . x3x    |  6 |   0  0  3  3 |   *  *  *  * * * N |  0  0  0  0  0  6 |  0  0  6
---------------+----+--------------+--------------------+-------------------+---------
x3o . x . .      6 |   6  3  0  0 |   2  3  0  0 0 0 0 | 6N  *  *  *  *  * |  1  1  0
x3o . . x .      6 |   6  0  3  0 |   2  0  3  0 0 0 0 |  * 6N  *  *  *  * |  1  0  1
x3o . . . x      6 |   6  0  0  3 |   2  0  0  3 0 0 0 |  *  * 6N  *  *  * |  0  1  1
x . . x3x .     12 |   6  6  6  0 |   0  3  3  0 2 0 0 |  *  *  * 3N  *  * |  2  0  0
x . . x . x3*d  12 |   6  6  0  6 |   0  3  0  3 0 2 0 |  *  *  *  * 3N  * |  0  2  0
x . . . x3x     12 |   6  0  6  6 |   0  0  3  3 0 0 2 |  *  *  *  *  * 3N |  0  0  2
---------------+----+--------------+--------------------+-------------------+---------
x3o . x3x .     18 |  18  9  9  0 |   6  9  9  0 3 0 0 |  3  3  0  3  0  0 | 2N  *  *
x3o . x . x3*d  18 |  18  9  0  9 |   6  9  0  9 0 3 0 |  3  0  3  0  3  0 |  * 2N  *
x3o . . x3x     18 |  18  0  9  9 |   6  0  9  9 0 0 3 |  0  3  3  0  0  3 |  *  * 2N

((x3o3o3*a)) ((x3x3x3*d))   (N → ∞)

. . .    . . .    | 6N |   6  1  1  1 |  3  3  6  6  6 1 1 1 |  3  3  3  3  3  3  6  6  6 | 3 3 3 3 3 3
------------------+----+--------------+----------------------+----------------------------+------------
x . .    . . .    |  2 | 18N  *  *  * |  1  1  1  1  1 0 0 0 |  1  1  1  1  1  1  1  1  1 | 1 1 1 1 1 1
. . .    x . .    |  2 |   * 3N  *  * |  0  0  6  0  0 1 1 0 |  3  0  0  3  0  0  6  6  0 | 3 3 0 3 3 0
. . .    . x .    |  2 |   *  * 3N  * |  0  0  0  6  0 1 0 1 |  0  3  0  0  3  0  6  0  6 | 3 0 3 3 0 3
. . .    . . x    |  2 |   *  *  * 3N |  0  0  0  0  6 0 1 1 |  0  0  3  0  0  3  0  6  6 | 0 3 3 0 3 3
------------------+----+--------------+----------------------+----------------------------+------------
x3o .    . . .    |  3 |   3  0  0  0 | 6N  *  *  *  * * * * |  1  1  1  0  0  0  0  0  0 | 1 1 1 0 0 0
x . o3*a . . .    |  3 |   3  0  0  0 |  * 6N  *  *  * * * * |  0  0  0  1  1  1  0  0  0 | 0 0 0 1 1 1
x . .    x . .    |  4 |   2  2  0  0 |  *  * 9N  *  * * * * |  1  0  0  1  0  0  1  1  0 | 1 1 0 1 1 0
x . .    . x .    |  4 |   2  0  2  0 |  *  *  * 9N  * * * * |  0  1  0  0  1  0  1  0  1 | 1 0 1 1 0 1
x . .    . . x    |  4 |   2  0  0  2 |  *  *  *  * 9N * * * |  0  0  1  0  0  1  0  1  1 | 0 1 1 0 1 1
. . .    x3x .    |  6 |   0  3  3  0 |  *  *  *  *  * N * * |  0  0  0  0  0  0  6  0  0 | 3 0 0 3 0 0
. . .    x . x3*d |  6 |   0  3  0  3 |  *  *  *  *  * * N * |  0  0  0  0  0  0  0  6  0 | 0 3 0 0 3 0
. . .    . x3x    |  6 |   0  0  3  3 |  *  *  *  *  * * * N |  0  0  0  0  0  0  0  0  6 | 0 0 3 0 0 3
------------------+----+--------------+----------------------+----------------------------+------------
x3o .    x . .      6 |   6  3  0  0 |  2  0  3  0  0 0 0 0 | 3N  *  *  *  *  *  *  *  * | 1 1 0 0 0 0
x3o .    . x .      6 |   6  0  3  0 |  2  0  0  3  0 0 0 0 |  * 3N  *  *  *  *  *  *  * | 1 0 1 0 0 0
x3o .    . . x      6 |   6  0  0  3 |  2  0  0  0  3 0 0 0 |  *  * 3N  *  *  *  *  *  * | 0 1 1 0 0 0
x . o3*a x . .      6 |   6  3  0  0 |  0  2  3  0  0 0 0 0 |  *  *  * 3N  *  *  *  *  * | 0 0 0 1 1 0
x . o3*a . x .      6 |   6  0  3  0 |  0  2  0  3  0 0 0 0 |  *  *  *  * 3N  *  *  *  * | 0 0 0 1 0 1
x . o3*a . . x      6 |   6  0  0  3 |  0  2  0  0  3 0 0 0 |  *  *  *  *  * 3N  *  *  * | 0 0 0 0 1 1
x . .    x3x .     12 |   6  6  6  0 |  0  0  3  3  0 2 0 0 |  *  *  *  *  *  * 3N  *  * | 1 0 0 1 0 0
x . .    x . x3*d  12 |   6  6  0  6 |  0  0  3  0  3 0 2 0 |  *  *  *  *  *  *  * 3N  * | 0 1 0 0 1 0
x . .    . x3x     12 |   6  0  6  6 |  0  0  0  3  3 0 0 2 |  *  *  *  *  *  *  *  * 3N | 0 0 1 0 0 1
------------------+----+--------------+----------------------+----------------------------+------------
x3o .    x3x .     18 |  18  9  9  0 |  6  0  9  9  0 3 0 0 |  3  3  0  0  0  0  3  0  0 | N * * * * *
x3o .    x . x3*d  18 |  18  9  0  9 |  6  0  9  0  9 0 3 0 |  3  0  3  0  0  0  0  3  0 | * N * * * *
x3o .    . x3x     18 |  18  0  9  9 |  6  0  0  9  9 0 0 3 |  0  3  3  0  0  0  0  0  3 | * * N * * *
x . o3*a x3x .     18 |  18  9  9  0 |  0  6  9  9  0 3 0 0 |  0  0  0  3  3  0  3  0  0 | * * * N * *
x . o3*a x . x3*d  18 |  18  9  0  9 |  0  6  9  0  9 0 3 0 |  0  0  0  3  0  3  0  3  0 | * * * * N *
x . o3*a . x3x     18 |  18  0  9  9 |  0  6  0  9  9 0 0 3 |  0  0  0  0  3  3  0  0  3 | * * * * * N

© 2004-2026
top of page