| Acronym | thibbit |
| Name | triangular-hexagonal duoprismatic tetracomb |
Incidence matrix according to Dynkin symbol
((x3o6o)) ((o3o6x)) (N → ∞) . . . . . . | 2N | 6 3 | 6 18 3 | 18 18 | 18 ------------+----+-------+---------+-------+--- x . . . . . | 2 | 6N * | 2 3 0 | 6 3 | 6 . . . . . x | 2 | * 3N | 0 6 2 | 6 12 | 12 ------------+----+-------+---------+-------+--- x3o . . . . | 3 | 3 0 | 4N * * | 3 0 | 3 x . . . . x | 4 | 2 2 | * 9N * | 2 2 | 4 . . . . o6x | 6 | 0 6 | * * N | 0 6 | 6 ------------+----+-------+---------+-------+--- x3o . . . x ♦ 6 | 6 3 | 2 3 0 | 6N * | 2 x . . . o6x ♦ 12 | 6 12 | 0 6 2 | * 3N | 2 ------------+----+-------+---------+-------+--- x3o . . o6x ♦ 18 | 18 18 | 6 18 3 | 6 3 | 2N
((x3x6o)) ((x3o6o)) (N → ∞);) . . . . . . | 6N | 1 2 6 | 2 6 1 12 6 | 12 6 6 12 | 12 6 ------------+----+-----------+-----------------+--------------+------ x . . . . . | 2 | 3N * * | 2 6 0 0 0 | 12 6 0 0 | 12 0 . x . . . . | 2 | * 6N * | 1 0 1 6 0 | 6 0 6 6 | 6 6 . . . x . . | 2 | * * 18N | 0 1 0 2 2 | 2 2 1 4 | 4 2 ------------+----+-----------+-----------------+--------------+------ x3x . . . . | 6 | 3 3 0 | 2N * * * * | 6 0 0 0 | 6 0 x . . x . . | 4 | 2 0 2 | * 9N * * * | 2 2 0 0 | 4 0 . x6o . . . | 6 | 0 6 0 | * * N * * | 0 0 6 0 | 0 6 . x . x . . | 4 | 0 2 2 | * * * 18N * | 1 0 1 2 | 2 2 . . . x3o . | 3 | 0 0 3 | * * * * 12N | 0 1 0 2 | 2 1 ------------+----+-----------+-----------------+--------------+------ x3x . x . . ♦ 12 | 6 6 6 | 2 3 0 3 0 | 6N * * * | 2 0 x . . x3o . ♦ 6 | 3 0 6 | 0 3 0 0 2 | * 6N * * | 2 0 . x6o x . . ♦ 12 | 0 12 6 | 0 0 2 6 0 | * * 3N * | 0 2 . x . x3o . ♦ 6 | 0 3 6 | 0 0 0 3 2 | * * * 12N | 1 1 ------------+----+-----------+-----------------+--------------+------ x3x . x3o . ♦ 18 | 9 9 18 | 3 9 0 9 6 | 3 3 0 3 | 4N * . x6o x3o . ♦ 18 | 0 18 18 | 0 0 3 18 6 | 0 0 3 6 | * 2N
((o3o6x)) ((x3o3o3*d)) (N → ∞) . . . . . . | 2N | 3 6 | 3 18 3 3 | 18 9 9 | 9 9 ---------------+----+-------+------------+----------+---- . . x . . . | 2 | 3N * | 2 6 0 0 | 12 3 3 | 6 6 . . . x . . | 2 | * 6N | 0 3 1 1 | 3 3 3 | 3 3 ---------------+----+-------+------------+----------+---- . o6x . . . | 6 | 6 0 | N * * * | 6 0 0 | 3 3 . . x x . . | 4 | 2 2 | * 9N * * | 2 1 1 | 2 2 . . . x3o . | 3 | 0 3 | * * 2N * | 0 3 0 | 3 0 . . . x . o3*d | 3 | 0 3 | * * * 2N | 0 0 3 | 0 3 ---------------+----+-------+------------+----------+---- . o6x x . . ♦ 12 | 12 6 | 2 6 0 0 | 3N * * | 1 1 . . x x3o . ♦ 6 | 3 6 | 0 3 2 0 | * 3N * | 2 0 . . x x . o3*d ♦ 6 | 3 6 | 0 3 0 2 | * * 3N | 0 2 ---------------+----+-------+------------+----------+---- . o6x x3o . ♦ 18 | 18 18 | 3 18 6 0 | 3 6 0 | N * . o6x x . o3*d ♦ 18 | 18 18 | 3 18 0 6 | 3 0 6 | * N
((x3x6o)) ((x3o3o3*d)) (N → ∞) . . . . . . | 6N | 1 2 6 | 2 6 1 12 3 3 | 12 3 3 6 6 6 | 6 6 3 3 ---------------+----+-----------+-------------------+-------------------+---------- x . . . . . | 2 | 3N * * | 2 6 0 0 0 0 | 12 3 3 0 0 0 | 6 6 0 0 . x . . . . | 2 | * 6N * | 1 0 1 6 0 0 | 6 0 0 6 3 3 | 3 3 3 3 . . . x . . | 2 | * * 18N | 0 1 0 2 1 1 | 2 1 1 1 2 2 | 2 2 1 1 ---------------+----+-----------+-------------------+-------------------+---------- x3x . . . . | 6 | 3 3 0 | 2N * * * * * | 6 0 0 0 0 0 | 3 3 0 0 x . . x . . | 4 | 2 0 2 | * 9N * * * * | 2 1 1 0 0 0 | 2 2 0 0 . x6o . . . | 6 | 0 6 0 | * * N * * * | 0 0 0 6 0 0 | 0 0 3 3 . x . x . . | 4 | 0 2 2 | * * * 18N * * | 1 0 0 1 1 1 | 1 1 1 1 . . . x3o . | 3 | 0 0 3 | * * * * 6N * | 0 1 0 0 2 0 | 2 0 1 0 . . . x . o3*d | 3 | 0 0 3 | * * * * * 6N | 0 0 1 0 0 2 | 0 2 0 1 ---------------+----+-----------+-------------------+-------------------+---------- x3x . x . . ♦ 12 | 6 6 6 | 2 3 0 3 0 0 | 6N * * * * * | 1 1 0 0 x . . x3o . ♦ 6 | 3 0 6 | 0 3 0 0 2 0 | * 3N * * * * | 2 0 0 0 x . . x . o3*d ♦ 6 | 3 0 6 | 0 3 0 0 0 2 | * * 3N * * * | 0 2 0 0 . x6o x . . ♦ 12 | 0 12 6 | 0 0 2 6 0 0 | * * * 3N * * | 0 0 1 1 . x . x3o . ♦ 6 | 0 3 6 | 0 0 0 3 2 0 | * * * * 6N * | 1 0 1 0 . x . x . o3*d ♦ 6 | 0 3 6 | 0 0 0 3 0 2 | * * * * * 6N | 0 1 0 1 ---------------+----+-----------+-------------------+-------------------+---------- x3x . x3o . ♦ 18 | 9 9 18 | 3 9 0 9 6 0 | 3 3 0 0 3 0 | 2N * * * x3x . x . o3*d ♦ 18 | 9 9 18 | 3 9 0 9 0 6 | 3 0 3 0 0 3 | * 2N * * . x6o x3o . ♦ 18 | 0 18 18 | 0 0 3 18 6 0 | 0 0 0 3 6 0 | * * N * . x6o x . o3*d ♦ 18 | 0 18 18 | 0 0 3 18 0 6 | 0 0 0 3 0 6 | * * * N
((x3o6o)) ((x3x3x3*d)) (N → ∞) . . . . . . | 6N | 6 1 1 1 | 6 6 6 6 1 1 1 | 6 6 6 6 6 6 | 6 6 6 ---------------+----+--------------+--------------------+-------------------+--------- x . . . . . | 2 | 18N * * * | 2 1 1 1 0 0 0 | 2 2 2 1 1 1 | 2 2 2 . . . x . . | 2 | * 3N * * | 0 6 0 0 1 1 0 | 6 0 0 6 6 0 | 6 6 0 . . . . x . | 2 | * * 3N * | 0 0 6 0 1 0 1 | 0 6 0 6 0 6 | 6 0 6 . . . . . x | 2 | * * * 3N | 0 0 0 6 0 1 1 | 0 0 6 0 6 6 | 0 6 6 ---------------+----+--------------+--------------------+-------------------+--------- x3o . . . . | 3 | 3 0 0 0 | 12N * * * * * * | 1 1 1 0 0 0 | 1 1 1 x . . x . . | 4 | 2 2 0 0 | * 9N * * * * * | 2 0 0 1 1 0 | 2 2 0 x . . . x . | 4 | 2 0 2 0 | * * 9N * * * * | 0 2 0 1 0 1 | 2 0 2 x . . . . x | 4 | 2 0 0 2 | * * * 9N * * * | 0 0 2 0 1 1 | 0 2 2 . . . x3x . | 6 | 0 3 3 0 | * * * * N * * | 0 0 0 6 0 0 | 6 0 0 . . . x . x3*d | 6 | 0 3 0 3 | * * * * * N * | 0 0 0 0 6 0 | 0 6 0 . . . . x3x | 6 | 0 0 3 3 | * * * * * * N | 0 0 0 0 0 6 | 0 0 6 ---------------+----+--------------+--------------------+-------------------+--------- x3o . x . . ♦ 6 | 6 3 0 0 | 2 3 0 0 0 0 0 | 6N * * * * * | 1 1 0 x3o . . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 | * 6N * * * * | 1 0 1 x3o . . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 | * * 6N * * * | 0 1 1 x . . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 2 0 0 | * * * 3N * * | 2 0 0 x . . x . x3*d ♦ 12 | 6 6 0 6 | 0 3 0 3 0 2 0 | * * * * 3N * | 0 2 0 x . . . x3x ♦ 12 | 6 0 6 6 | 0 0 3 3 0 0 2 | * * * * * 3N | 0 0 2 ---------------+----+--------------+--------------------+-------------------+--------- x3o . x3x . ♦ 18 | 18 9 9 0 | 6 9 9 0 3 0 0 | 3 3 0 3 0 0 | 2N * * x3o . x . x3*d ♦ 18 | 18 9 0 9 | 6 9 0 9 0 3 0 | 3 0 3 0 3 0 | * 2N * x3o . . x3x ♦ 18 | 18 0 9 9 | 6 0 9 9 0 0 3 | 0 3 3 0 0 3 | * * 2N
((x3o3o3*a)) ((x3x3x3*d)) (N → ∞) . . . . . . | 6N | 6 1 1 1 | 3 3 6 6 6 1 1 1 | 3 3 3 3 3 3 6 6 6 | 3 3 3 3 3 3 ------------------+----+--------------+----------------------+----------------------------+------------ x . . . . . | 2 | 18N * * * | 1 1 1 1 1 0 0 0 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 . . . x . . | 2 | * 3N * * | 0 0 6 0 0 1 1 0 | 3 0 0 3 0 0 6 6 0 | 3 3 0 3 3 0 . . . . x . | 2 | * * 3N * | 0 0 0 6 0 1 0 1 | 0 3 0 0 3 0 6 0 6 | 3 0 3 3 0 3 . . . . . x | 2 | * * * 3N | 0 0 0 0 6 0 1 1 | 0 0 3 0 0 3 0 6 6 | 0 3 3 0 3 3 ------------------+----+--------------+----------------------+----------------------------+------------ x3o . . . . | 3 | 3 0 0 0 | 6N * * * * * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0 x . o3*a . . . | 3 | 3 0 0 0 | * 6N * * * * * * | 0 0 0 1 1 1 0 0 0 | 0 0 0 1 1 1 x . . x . . | 4 | 2 2 0 0 | * * 9N * * * * * | 1 0 0 1 0 0 1 1 0 | 1 1 0 1 1 0 x . . . x . | 4 | 2 0 2 0 | * * * 9N * * * * | 0 1 0 0 1 0 1 0 1 | 1 0 1 1 0 1 x . . . . x | 4 | 2 0 0 2 | * * * * 9N * * * | 0 0 1 0 0 1 0 1 1 | 0 1 1 0 1 1 . . . x3x . | 6 | 0 3 3 0 | * * * * * N * * | 0 0 0 0 0 0 6 0 0 | 3 0 0 3 0 0 . . . x . x3*d | 6 | 0 3 0 3 | * * * * * * N * | 0 0 0 0 0 0 0 6 0 | 0 3 0 0 3 0 . . . . x3x | 6 | 0 0 3 3 | * * * * * * * N | 0 0 0 0 0 0 0 0 6 | 0 0 3 0 0 3 ------------------+----+--------------+----------------------+----------------------------+------------ x3o . x . . ♦ 6 | 6 3 0 0 | 2 0 3 0 0 0 0 0 | 3N * * * * * * * * | 1 1 0 0 0 0 x3o . . x . ♦ 6 | 6 0 3 0 | 2 0 0 3 0 0 0 0 | * 3N * * * * * * * | 1 0 1 0 0 0 x3o . . . x ♦ 6 | 6 0 0 3 | 2 0 0 0 3 0 0 0 | * * 3N * * * * * * | 0 1 1 0 0 0 x . o3*a x . . ♦ 6 | 6 3 0 0 | 0 2 3 0 0 0 0 0 | * * * 3N * * * * * | 0 0 0 1 1 0 x . o3*a . x . ♦ 6 | 6 0 3 0 | 0 2 0 3 0 0 0 0 | * * * * 3N * * * * | 0 0 0 1 0 1 x . o3*a . . x ♦ 6 | 6 0 0 3 | 0 2 0 0 3 0 0 0 | * * * * * 3N * * * | 0 0 0 0 1 1 x . . x3x . ♦ 12 | 6 6 6 0 | 0 0 3 3 0 2 0 0 | * * * * * * 3N * * | 1 0 0 1 0 0 x . . x . x3*d ♦ 12 | 6 6 0 6 | 0 0 3 0 3 0 2 0 | * * * * * * * 3N * | 0 1 0 0 1 0 x . . . x3x ♦ 12 | 6 0 6 6 | 0 0 0 3 3 0 0 2 | * * * * * * * * 3N | 0 0 1 0 0 1 ------------------+----+--------------+----------------------+----------------------------+------------ x3o . x3x . ♦ 18 | 18 9 9 0 | 6 0 9 9 0 3 0 0 | 3 3 0 0 0 0 3 0 0 | N * * * * * x3o . x . x3*d ♦ 18 | 18 9 0 9 | 6 0 9 0 9 0 3 0 | 3 0 3 0 0 0 0 3 0 | * N * * * * x3o . . x3x ♦ 18 | 18 0 9 9 | 6 0 0 9 9 0 0 3 | 0 3 3 0 0 0 0 0 3 | * * N * * * x . o3*a x3x . ♦ 18 | 18 9 9 0 | 0 6 9 9 0 3 0 0 | 0 0 0 3 3 0 3 0 0 | * * * N * * x . o3*a x . x3*d ♦ 18 | 18 9 0 9 | 0 6 9 0 9 0 3 0 | 0 0 0 3 0 3 0 3 0 | * * * * N * x . o3*a . x3x ♦ 18 | 18 0 9 9 | 0 6 0 9 9 0 0 3 | 0 0 0 0 3 3 0 0 3 | * * * * * N
© 2004-2026 | top of page |