| Acronym | thisbit |
| Name | trihexagonal-square duoprismatic tetracomb |
Incidence matrix according to Dynkin symbol
((o3x6o)) ((x4o4o)) (N → ∞) . . . . . . | 3N | 4 6 | 2 2 16 4 | 8 8 16 | 8 8 ------------+----+-------+-------------+----------+----- . x . . . . | 2 | 6N * | 1 1 4 0 | 4 4 4 | 4 4 . . . x . . | 2 | * 6N | 0 0 4 2 | 2 2 8 | 4 4 ------------+----+-------+-------------+----------+----- o3x . . . . | 3 | 3 0 | 2N * * * | 6 0 0 | 6 0 . x6o . . . | 6 | 6 0 | * N * * | 0 6 0 | 0 6 . x . x . . | 4 | 2 2 | * * 12N * | 1 1 2 | 2 2 . . . x4o . | 4 | 0 4 | * * * 3N | 0 0 4 | 2 2 ------------+----+-------+-------------+----------+----- o3x . x . . ♦ 6 | 6 3 | 2 0 3 0 | 4N * * | 2 0 . x6o x . . ♦ 12 | 12 6 | 0 2 6 0 | * 2N * | 0 2 . x . x4o . ♦ 8 | 4 8 | 0 0 4 2 | * * 6N | 1 1 ------------+----+-------+-------------+----------+----- o3x . x4o . ♦ 12 | 12 12 | 4 0 12 3 | 4 0 3 | 2N * . x6o x4o . ♦ 24 | 24 24 | 0 4 24 6 | 0 4 6 | * N
((o3x6o)) ((o4x4o)) (N → ∞) . . . . . . | 6N | 4 6 | 2 2 16 2 2 | 8 8 8 8 | 4 4 4 4 ------------+----+---------+-----------------+-------------+---------- . x . . . . | 2 | 12N * | 1 1 4 0 0 | 4 4 2 2 | 2 2 2 2 . . . . x . | 2 | * 12N | 0 0 4 1 1 | 2 2 4 4 | 2 2 2 2 ------------+----+---------+-----------------+-------------+---------- o3x . . . . | 3 | 3 0 | 4N * * * * | 4 0 0 0 | 2 2 0 0 . x6o . . . | 6 | 6 0 | * 2N * * * | 0 4 0 0 | 0 0 2 2 . x . . x . | 4 | 2 2 | * * 24N * * | 1 1 1 1 | 1 1 1 1 . . . o4x . | 4 | 0 4 | * * * 3N * | 0 0 4 0 | 2 0 2 0 . . . . x4o | 4 | 0 4 | * * * * 3N | 0 0 0 4 | 0 2 0 2 ------------+----+---------+-----------------+-------------+---------- o3x . . x . ♦ 6 | 6 3 | 2 0 3 0 0 | 8N * * * | 1 1 0 0 . x6o . x . ♦ 12 | 12 6 | 0 2 6 0 0 | * 4N * * | 0 0 1 1 . x . o4x . ♦ 8 | 4 8 | 0 0 4 2 0 | * * 6N * | 1 0 1 0 . x . . x4o ♦ 8 | 4 8 | 0 0 4 0 2 | * * * 6N | 0 1 0 1 ------------+----+---------+-----------------+-------------+---------- o3x . o4x . ♦ 12 | 12 12 | 4 0 12 3 0 | 4 0 3 0 | 2N * * * o3x . . x4o ♦ 12 | 12 12 | 4 0 12 0 3 | 4 0 0 3 | * 2N * * . x6o o4x . ♦ 24 | 24 24 | 0 4 24 6 0 | 0 4 6 0 | * * N * . x6o . x4o ♦ 24 | 24 24 | 0 4 24 0 6 | 0 4 0 6 | * * * N
((o3x6o)) ((x4o4x)) (N → ∞) . . . . . . | 12N | 4 3 3 | 2 2 8 8 1 2 1 | 4 4 4 4 4 8 4 | 2 4 2 2 4 2 ------------+-----+-------------+------------------------+-----------------------+---------------- . x . . . . | 2 | 24N * * | 1 1 2 2 0 0 0 | 2 2 2 2 1 2 1 | 1 2 1 1 2 1 . . . x . . | 2 | * 12N * | 0 0 4 0 1 1 0 | 2 0 2 0 4 4 0 | 2 2 0 2 2 0 . . . . . x | 2 | * * 12N | 0 0 0 4 0 1 1 | 0 2 0 2 0 4 4 | 0 2 2 0 2 2 ------------+-----+-------------+------------------------+-----------------------+---------------- o3x . . . . | 3 | 3 0 0 | 8N * * * * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0 . x6o . . . | 6 | 6 0 0 | * 4N * * * * * | 0 0 2 2 0 0 0 | 0 0 0 1 2 1 . x . x . . | 4 | 2 2 0 | * * 24N * * * * | 1 0 1 0 1 1 0 | 1 1 0 1 1 0 . x . . . x | 4 | 2 0 2 | * * * 24N * * * | 0 1 0 1 0 1 1 | 0 1 1 0 1 1 . . . x4o . | 4 | 0 4 0 | * * * * 3N * * | 0 0 0 0 4 0 0 | 2 0 0 2 0 0 . . . x . x | 4 | 0 2 2 | * * * * * 6N * | 0 0 0 0 0 4 0 | 0 2 0 0 2 0 . . . . o4x | 4 | 0 0 4 | * * * * * * 3N | 0 0 0 0 0 0 4 | 0 0 2 0 0 2 ------------+-----+-------------+------------------------+-----------------------+---------------- o3x . x . . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 0 | 8N * * * * * * | 1 1 0 0 0 0 o3x . . . x ♦ 6 | 6 0 3 | 2 0 0 3 0 0 0 | * 8N * * * * * | 0 1 1 0 0 0 . x6o x . . ♦ 12 | 12 6 0 | 0 2 6 0 0 0 0 | * * 4N * * * * | 0 0 0 1 1 0 . x6o . . x ♦ 12 | 12 0 6 | 0 2 0 6 0 0 0 | * * * 4N * * * | 0 0 0 0 1 1 . x . x4o . ♦ 8 | 4 8 0 | 0 0 4 0 2 0 0 | * * * * 6N * * | 1 0 0 1 0 0 . x . x . x ♦ 8 | 4 4 4 | 0 0 2 2 0 2 0 | * * * * * 12N * | 0 1 0 0 1 0 . x . . o4x ♦ 8 | 4 0 8 | 0 0 0 4 0 0 2 | * * * * * * 6N | 0 0 1 0 0 1 ------------+-----+-------------+------------------------+-----------------------+---------------- o3x . x4o . ♦ 12 | 12 12 0 | 4 0 12 0 3 0 0 | 4 0 0 0 3 0 0 | 2N * * * * * o3x . x . x ♦ 12 | 12 6 6 | 4 0 6 6 0 3 0 | 2 2 0 0 0 3 0 | * 4N * * * * o3x . . o4x ♦ 12 | 12 0 12 | 4 0 0 12 0 0 3 | 0 4 0 0 0 0 3 | * * 2N * * * . x6o x4o . ♦ 24 | 24 24 0 | 0 4 24 0 6 0 0 | 0 0 4 0 6 0 0 | * * * N * * . x6o x . x ♦ 24 | 24 12 12 | 0 4 12 12 0 6 0 | 0 0 2 2 0 6 0 | * * * * 2N * . x6o . o4x ♦ 24 | 24 0 24 | 0 4 0 24 0 0 6 | 0 0 0 4 0 0 6 | * * * * * N
((x4o4o)) ((x3x3o3*d)) (N → ∞) . . . . . . | 3N | 4 2 2 | 4 8 8 2 1 1 | 8 8 8 4 4 | 8 4 4 ---------------+----+----------+----------------+----------------+------ x . . . . . | 2 | 6N * * | 2 2 2 0 0 0 | 4 4 2 1 1 | 4 2 2 . . . x . . | 2 | * 3N * | 0 4 0 1 1 0 | 4 0 4 4 0 | 4 4 0 . . . . x . | 2 | * * 3N | 0 0 4 1 0 1 | 0 4 4 0 4 | 4 0 4 ---------------+----+----------+----------------+----------------+------ x4o . . . . | 4 | 4 0 0 | 3N * * * * * | 2 2 0 0 0 | 2 1 1 x . . x . . | 4 | 2 2 0 | * 6N * * * * | 2 0 1 1 0 | 2 2 0 x . . . x . | 4 | 2 0 2 | * * 6N * * * | 0 2 1 0 1 | 2 0 2 . . . x3x . | 6 | 0 3 3 | * * * N * * | 0 0 4 0 0 | 4 0 0 . . . x . o3*d | 3 | 0 3 0 | * * * * N * | 0 0 0 4 0 | 0 4 0 . . . . x3o | 3 | 0 0 3 | * * * * * N | 0 0 0 0 4 | 0 0 4 ---------------+----+----------+----------------+----------------+------ x4o . x . . ♦ 8 | 8 4 0 | 2 4 0 0 0 0 | 3N * * * * | 1 1 0 x4o . . x . ♦ 8 | 8 0 4 | 2 0 4 0 0 0 | * 3N * * * | 1 0 1 x . . x3x . ♦ 12 | 6 6 6 | 0 3 3 2 0 0 | * * 2N * * | 2 0 0 x . . x . o3*d ♦ 6 | 3 6 0 | 0 3 0 0 2 0 | * * * 2N * | 0 2 0 x . . . x3o ♦ 6 | 3 0 6 | 0 0 3 0 0 2 | * * * * 2N | 0 0 2 ---------------+----+----------+----------------+----------------+------ x4o . x3x . ♦ 24 | 24 12 12 | 6 12 12 4 0 0 | 3 3 4 0 0 | N * * x4o . x . o3*d ♦ 12 | 12 12 0 | 3 12 0 0 4 0 | 3 0 0 4 0 | * N * x4o . . x3o ♦ 12 | 12 0 12 | 3 0 12 0 0 4 | 0 3 0 0 4 | * * N
((o4x4o)) ((x3x3o3*d)) (N → ∞) . . . . . . | 6N | 4 2 2 | 2 2 8 8 2 1 1 | 4 4 4 4 8 4 4 | 4 2 2 4 2 2 ---------------+----+-----------+------------------------+----------------------+------------ . x . . . . | 2 | 12N * * | 1 1 2 2 0 0 0 | 2 2 2 2 2 1 1 | 2 1 1 2 1 1 . . . x . . | 2 | * 6N * | 0 0 4 0 1 1 0 | 2 0 2 0 4 4 0 | 2 2 0 2 2 0 . . . . x . | 2 | * * 6N | 0 0 0 4 1 0 1 | 0 2 0 2 4 0 4 | 2 0 2 2 0 2 ---------------+----+-----------+------------------------+----------------------+------------ o4x . . . . | 4 | 4 0 0 | 3N * * * * * * | 2 2 0 0 0 0 0 | 2 1 1 0 0 0 . x4o . . . | 4 | 4 0 0 | * 3N * * * * * | 0 0 2 2 0 0 0 | 0 0 0 2 1 1 . x . x . . | 4 | 2 2 0 | * * 12N * * * * | 1 0 1 0 1 1 0 | 1 1 0 1 1 0 . x . . x . | 4 | 2 0 2 | * * * 12N * * * | 0 1 0 1 1 0 1 | 1 0 1 1 0 1 . . . x3x . | 6 | 0 3 3 | * * * * 2N * * | 0 0 0 0 4 0 0 | 2 0 0 2 0 0 . . . x . o3*d | 3 | 0 3 0 | * * * * * 2N * | 0 0 0 0 0 4 0 | 0 2 0 0 2 0 . . . . x3o | 3 | 0 0 3 | * * * * * * 2N | 0 0 0 0 0 0 4 | 0 0 2 0 0 2 ---------------+----+-----------+------------------------+----------------------+------------ o4x . x . . ♦ 8 | 8 4 0 | 2 0 4 0 0 0 0 | 3N * * * * * * | 1 1 0 0 0 0 o4x . . x . ♦ 8 | 8 0 4 | 2 0 0 4 0 0 0 | * 3N * * * * * | 1 0 1 0 0 0 . x4o x . . ♦ 8 | 8 4 0 | 0 2 4 0 0 0 0 | * * 3N * * * * | 0 0 0 1 1 0 . x4o . x . ♦ 8 | 8 0 4 | 0 2 0 4 0 0 0 | * * * 3N * * * | 0 0 0 1 0 1 . x . x3x . ♦ 12 | 6 6 6 | 0 0 3 3 2 0 0 | * * * * 4N * * | 1 0 0 1 0 0 . x . x . o3*d ♦ 6 | 3 6 0 | 0 0 3 0 0 2 0 | * * * * * 4N * | 0 1 0 0 1 0 . x . . x3o ♦ 6 | 3 0 6 | 0 0 0 3 0 0 2 | * * * * * * 4N | 0 0 1 0 0 1 ---------------+----+-----------+------------------------+----------------------+------------ o4x . x3x . ♦ 24 | 24 12 12 | 6 0 12 12 4 0 0 | 3 3 0 0 4 0 0 | N * * * * * o4x . x . o3*d ♦ 12 | 12 12 0 | 3 0 12 0 0 4 0 | 3 0 0 0 0 4 0 | * N * * * * o4x . . x3o ♦ 12 | 12 0 12 | 3 0 0 12 0 0 4 | 0 3 0 0 0 0 4 | * * N * * * . x4o x3x . ♦ 24 | 24 12 12 | 0 6 12 12 4 0 0 | 0 0 3 3 4 0 0 | * * * N * * . x4o x . o3*d ♦ 12 | 12 12 0 | 0 3 12 0 0 4 0 | 0 0 3 0 0 4 0 | * * * * N * . x4o . x3o ♦ 12 | 12 0 12 | 0 3 0 12 0 0 4 | 0 0 0 3 0 0 4 | * * * * * N
((x4o4x)) ((x3x3o3*d)) (N → ∞) . . . . . . | 12N | 2 2 2 2 | 1 2 4 4 1 4 4 2 1 1 | 2 2 4 4 4 2 2 2 2 4 2 2 | 2 1 1 4 2 2 2 1 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+--------------------- x . . . . . | 2 | 12N * * * | 1 1 2 2 0 0 0 0 0 0 | 2 2 2 2 2 1 1 0 0 0 0 0 | 2 1 1 2 1 1 0 0 0 . . x . . . | 2 | * 12N * * | 0 1 0 0 1 2 2 0 0 0 | 0 0 2 2 0 0 0 2 2 2 1 1 | 0 0 0 2 1 1 2 1 1 . . . x . . | 2 | * * 12N * | 0 0 2 0 0 2 0 1 1 0 | 1 0 2 0 2 2 0 1 0 2 2 0 | 1 1 0 2 2 0 1 1 0 . . . . x . | 2 | * * * 12N | 0 0 0 2 0 0 2 1 0 1 | 0 1 0 2 2 0 2 0 1 2 0 2 | 1 0 1 2 0 2 1 0 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+--------------------- x4o . . . . | 4 | 4 0 0 0 | 3N * * * * * * * * * | 2 2 0 0 0 0 0 0 0 0 0 0 | 2 1 1 0 0 0 0 0 0 x . x . . . | 4 | 2 2 0 0 | * 6N * * * * * * * * | 0 0 2 2 0 0 0 0 0 0 0 0 | 0 0 0 2 1 1 0 0 0 x . . x . . | 4 | 2 0 2 0 | * * 12N * * * * * * * | 1 0 1 0 1 1 0 0 0 0 0 0 | 1 1 0 1 1 0 0 0 0 x . . . x . | 4 | 2 0 0 2 | * * * 12N * * * * * * | 0 1 0 1 1 0 1 0 0 0 0 0 | 1 0 1 1 0 1 0 0 0 . o4x . . . | 4 | 0 4 0 0 | * * * * 3N * * * * * | 0 0 0 0 0 0 0 2 2 0 0 0 | 0 0 0 0 0 0 2 1 1 . . x x . . | 4 | 0 2 2 0 | * * * * * 12N * * * * | 0 0 1 0 0 0 0 1 0 1 1 0 | 0 0 0 1 1 0 1 1 0 . . x . x . | 4 | 0 2 0 2 | * * * * * * 12N * * * | 0 0 0 1 0 0 0 0 1 1 0 1 | 0 0 0 1 0 1 1 0 1 . . . x3x . | 6 | 0 0 3 3 | * * * * * * * 4N * * | 0 0 0 0 2 0 0 0 0 2 0 0 | 1 0 0 2 0 0 1 0 0 . . . x . o3*d | 3 | 0 0 3 0 | * * * * * * * * 4N * | 0 0 0 0 0 2 0 0 0 0 2 0 | 0 1 0 0 2 0 0 1 0 . . . . o3x | 3 | 0 0 0 3 | * * * * * * * * * 4N | 0 0 0 0 0 0 2 0 0 0 0 2 | 0 0 1 0 0 2 0 0 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+--------------------- x4o . x . . ♦ 8 | 8 0 4 0 | 2 0 4 0 0 0 0 0 0 0 | 3N * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 x4o . . x . ♦ 8 | 8 0 0 4 | 2 0 0 4 0 0 0 0 0 0 | * 3N * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 x . x x . . ♦ 8 | 4 4 4 0 | 0 2 2 0 0 2 0 0 0 0 | * * 6N * * * * * * * * * | 0 0 0 1 1 0 0 0 0 x . x . x . ♦ 8 | 4 4 0 4 | 0 2 0 2 0 0 2 0 0 0 | * * * 6N * * * * * * * * | 0 0 0 1 0 1 0 0 0 x . . x3x . ♦ 12 | 6 0 6 6 | 0 0 3 3 0 0 0 2 0 0 | * * * * 4N * * * * * * * | 1 0 0 1 0 0 0 0 0 x . . x . o3*d ♦ 6 | 3 0 6 0 | 0 0 3 0 0 0 0 0 2 0 | * * * * * 4N * * * * * * | 0 1 0 0 1 0 0 0 0 x . . . x3o ♦ 6 | 3 0 0 6 | 0 0 0 3 0 0 0 0 0 2 | * * * * * * 4N * * * * * | 0 0 1 0 0 1 0 0 0 . o4x x . . ♦ 8 | 0 8 4 0 | 0 0 0 0 2 4 0 0 0 0 | * * * * * * * 3N * * * * | 0 0 0 0 0 0 1 1 0 . o4x . x . ♦ 8 | 0 8 0 4 | 0 0 0 0 2 0 4 0 0 0 | * * * * * * * * 3N * * * | 0 0 0 0 0 0 1 0 1 . . x x3x . ♦ 12 | 0 6 6 6 | 0 0 0 0 0 3 3 2 0 0 | * * * * * * * * * 4N * * | 0 0 0 1 0 0 1 0 0 . . x x . o3*d ♦ 6 | 0 3 6 0 | 0 0 0 0 0 3 0 0 2 0 | * * * * * * * * * * 4N * | 0 0 0 0 1 0 0 1 0 . . x . x3o ♦ 6 | 0 3 0 6 | 0 0 0 0 0 0 3 0 0 2 | * * * * * * * * * * * 4N | 0 0 0 0 0 1 0 0 1 ---------------+-----+-----------------+-----------------------------------+-------------------------------------+--------------------- x4o . x3x . ♦ 24 | 24 0 12 12 | 6 0 12 12 0 0 0 4 0 0 | 3 3 0 0 4 0 0 0 0 0 0 0 | N * * * * * * * * x4o . x . o3*d ♦ 12 | 12 0 12 0 | 3 0 12 0 0 0 0 0 4 0 | 3 0 0 0 0 4 0 0 0 0 0 0 | * N * * * * * * * x4o . . x3o ♦ 12 | 12 0 0 12 | 3 0 0 12 0 0 0 0 0 4 | 0 3 0 0 0 0 4 0 0 0 0 0 | * * N * * * * * * x . x x3x . ♦ 24 | 12 12 12 12 | 0 6 6 6 0 6 6 4 0 0 | 0 0 3 3 2 0 0 0 0 2 0 0 | * * * 2N * * * * * x . x x . o3*d ♦ 12 | 6 6 12 0 | 0 3 6 0 0 6 0 0 4 0 | 0 0 3 0 0 2 0 0 0 0 2 0 | * * * * 2N * * * * x . x . x3o ♦ 12 | 6 6 0 12 | 0 3 0 6 0 0 6 0 0 4 | 0 0 0 3 0 0 2 0 0 0 0 2 | * * * * * 2N * * * . o4x x3x . ♦ 24 | 0 24 12 12 | 0 0 0 0 6 12 12 4 0 0 | 0 0 0 0 0 0 0 3 3 4 0 0 | * * * * * * N * * . o4x x . o3*d ♦ 12 | 0 12 12 0 | 0 0 0 0 3 12 0 0 4 0 | 0 0 0 0 0 0 0 3 0 0 4 0 | * * * * * * * N * . o4x . x3o ♦ 12 | 0 12 0 12 | 0 0 0 0 3 0 12 0 0 4 | 0 0 0 0 0 0 0 0 3 0 0 4 | * * * * * * * * N
((x∞o)) ((x∞o)) ((o3x6o)) (N → ∞) ...
((x∞x)) ((x∞o)) ((o3x6o)) (N → ∞) ...
((x∞x)) ((x∞x)) ((o3x6o)) (N → ∞) ...
((x∞o)) ((x∞o)) ((x3x3o3*e)) (N → ∞) ...
((x∞x)) ((x∞o)) ((x3x3o3*e)) (N → ∞) ...
((x∞x)) ((x∞x)) ((x3x3o3*e)) (N → ∞) ...
© 2004-2026 | top of page |