Acronym thisbit
Name trihexagonal-square duoprismatic tetracomb

Incidence matrix according to Dynkin symbol

((o3x6o)) ((x4o4o))   (N → ∞)

. . . . . . | 3N |  4  6 |  2 2  16  4 |  8  8 16 |  8 8
------------+----+-------+-------------+----------+-----
. x . . . . |  2 | 6N  * |  1 1   4  0 |  4  4  4 |  4 4
. . . x . . |  2 |  * 6N |  0 0   4  2 |  2  2  8 |  4 4
------------+----+-------+-------------+----------+-----
o3x . . . . |  3 |  3  0 | 2N *   *  * |  6  0  0 |  6 0
. x6o . . . |  6 |  6  0 |  * N   *  * |  0  6  0 |  0 6
. x . x . . |  4 |  2  2 |  * * 12N  * |  1  1  2 |  2 2
. . . x4o . |  4 |  0  4 |  * *   * 3N |  0  0  4 |  2 2
------------+----+-------+-------------+----------+-----
o3x . x . .   6 |  6  3 |  2 0   3  0 | 4N  *  * |  2 0
. x6o x . .  12 | 12  6 |  0 2   6  0 |  * 2N  * |  0 2
. x . x4o .   8 |  4  8 |  0 0   4  2 |  *  * 6N |  1 1
------------+----+-------+-------------+----------+-----
o3x . x4o .  12 | 12 12 |  4 0  12  3 |  4  0  3 | 2N *
. x6o x4o .  24 | 24 24 |  0 4  24  6 |  0  4  6 |  * N


((o3x6o)) ((o4x4o))   (N → ∞)

. . . . . . | 6N |   4   6 |  2  2  16  2  2 |  8  8  8  8 |  4  4 4 4
------------+----+---------+-----------------+-------------+----------
. x . . . . |  2 | 12N   * |  1  1   4  0  0 |  4  4  2  2 |  2  2 2 2
. . . . x . |  2 |   * 12N |  0  0   4  1  1 |  2  2  4  4 |  2  2 2 2
------------+----+---------+-----------------+-------------+----------
o3x . . . . |  3 |   3   0 | 4N  *   *  *  * |  4  0  0  0 |  2  2 0 0
. x6o . . . |  6 |   6   0 |  * 2N   *  *  * |  0  4  0  0 |  0  0 2 2
. x . . x . |  4 |   2   2 |  *  * 24N  *  * |  1  1  1  1 |  1  1 1 1
. . . o4x . |  4 |   0   4 |  *  *   * 3N  * |  0  0  4  0 |  2  0 2 0
. . . . x4o |  4 |   0   4 |  *  *   *  * 3N |  0  0  0  4 |  0  2 0 2
------------+----+---------+-----------------+-------------+----------
o3x . . x .   6 |   6   3 |  2  0   3  0  0 | 8N  *  *  * |  1  1 0 0
. x6o . x .  12 |  12   6 |  0  2   6  0  0 |  * 4N  *  * |  0  0 1 1
. x . o4x .   8 |   4   8 |  0  0   4  2  0 |  *  * 6N  * |  1  0 1 0
. x . . x4o   8 |   4   8 |  0  0   4  0  2 |  *  *  * 6N |  0  1 0 1
------------+----+---------+-----------------+-------------+----------
o3x . o4x .  12 |  12  12 |  4  0  12  3  0 |  4  0  3  0 | 2N  * * *
o3x . . x4o  12 |  12  12 |  4  0  12  0  3 |  4  0  0  3 |  * 2N * *
. x6o o4x .  24 |  24  24 |  0  4  24  6  0 |  0  4  6  0 |  *  * N *
. x6o . x4o  24 |  24  24 |  0  4  24  0  6 |  0  4  0  6 |  *  * * N

((o3x6o)) ((x4o4x))   (N → ∞)

. . . . . . | 12N |   4   3   3 |  2  2   8   8  1  2  1 |  4  4  4  4  4   8  4 |  2  4  2 2  4 2
------------+-----+-------------+------------------------+-----------------------+----------------
. x . . . . |   2 | 24N   *   * |  1  1   2   2  0  0  0 |  2  2  2  2  1   2  1 |  1  2  1 1  2 1
. . . x . . |   2 |   * 12N   * |  0  0   4   0  1  1  0 |  2  0  2  0  4   4  0 |  2  2  0 2  2 0
. . . . . x |   2 |   *   * 12N |  0  0   0   4  0  1  1 |  0  2  0  2  0   4  4 |  0  2  2 0  2 2
------------+-----+-------------+------------------------+-----------------------+----------------
o3x . . . . |   3 |   3   0   0 | 8N  *   *   *  *  *  * |  2  2  0  0  0   0  0 |  1  2  1 0  0 0
. x6o . . . |   6 |   6   0   0 |  * 4N   *   *  *  *  * |  0  0  2  2  0   0  0 |  0  0  0 1  2 1
. x . x . . |   4 |   2   2   0 |  *  * 24N   *  *  *  * |  1  0  1  0  1   1  0 |  1  1  0 1  1 0
. x . . . x |   4 |   2   0   2 |  *  *   * 24N  *  *  * |  0  1  0  1  0   1  1 |  0  1  1 0  1 1
. . . x4o . |   4 |   0   4   0 |  *  *   *   * 3N  *  * |  0  0  0  0  4   0  0 |  2  0  0 2  0 0
. . . x . x |   4 |   0   2   2 |  *  *   *   *  * 6N  * |  0  0  0  0  0   4  0 |  0  2  0 0  2 0
. . . . o4x |   4 |   0   0   4 |  *  *   *   *  *  * 3N |  0  0  0  0  0   0  4 |  0  0  2 0  0 2
------------+-----+-------------+------------------------+-----------------------+----------------
o3x . x . .    6 |   6   3   0 |  2  0   3   0  0  0  0 | 8N  *  *  *  *   *  * |  1  1  0 0  0 0
o3x . . . x    6 |   6   0   3 |  2  0   0   3  0  0  0 |  * 8N  *  *  *   *  * |  0  1  1 0  0 0
. x6o x . .   12 |  12   6   0 |  0  2   6   0  0  0  0 |  *  * 4N  *  *   *  * |  0  0  0 1  1 0
. x6o . . x   12 |  12   0   6 |  0  2   0   6  0  0  0 |  *  *  * 4N  *   *  * |  0  0  0 0  1 1
. x . x4o .    8 |   4   8   0 |  0  0   4   0  2  0  0 |  *  *  *  * 6N   *  * |  1  0  0 1  0 0
. x . x . x    8 |   4   4   4 |  0  0   2   2  0  2  0 |  *  *  *  *  * 12N  * |  0  1  0 0  1 0
. x . . o4x    8 |   4   0   8 |  0  0   0   4  0  0  2 |  *  *  *  *  *   * 6N |  0  0  1 0  0 1
------------+-----+-------------+------------------------+-----------------------+----------------
o3x . x4o .   12 |  12  12   0 |  4  0  12   0  3  0  0 |  4  0  0  0  3   0  0 | 2N  *  * *  * *
o3x . x . x   12 |  12   6   6 |  4  0   6   6  0  3  0 |  2  2  0  0  0   3  0 |  * 4N  * *  * *
o3x . . o4x   12 |  12   0  12 |  4  0   0  12  0  0  3 |  0  4  0  0  0   0  3 |  *  * 2N *  * *
. x6o x4o .   24 |  24  24   0 |  0  4  24   0  6  0  0 |  0  0  4  0  6   0  0 |  *  *  * N  * *
. x6o x . x   24 |  24  12  12 |  0  4  12  12  0  6  0 |  0  0  2  2  0   6  0 |  *  *  * * 2N *
. x6o . o4x   24 |  24   0  24 |  0  4   0  24  0  0  6 |  0  0  0  4  0   0  6 |  *  *  * *  * N

((x4o4o)) ((x3x3o3*d))   (N → ∞)

. . . . . .    | 3N |  4  2  2 |  4  8  8 2 1 1 |  8  8  8  4  4 | 8 4 4
---------------+----+----------+----------------+----------------+------
x . . . . .    |  2 | 6N  *  * |  2  2  2 0 0 0 |  4  4  2  1  1 | 4 2 2
. . . x . .    |  2 |  * 3N  * |  0  4  0 1 1 0 |  4  0  4  4  0 | 4 4 0
. . . . x .    |  2 |  *  * 3N |  0  0  4 1 0 1 |  0  4  4  0  4 | 4 0 4
---------------+----+----------+----------------+----------------+------
x4o . . . .    |  4 |  4  0  0 | 3N  *  * * * * |  2  2  0  0  0 | 2 1 1
x . . x . .    |  4 |  2  2  0 |  * 6N  * * * * |  2  0  1  1  0 | 2 2 0
x . . . x .    |  4 |  2  0  2 |  *  * 6N * * * |  0  2  1  0  1 | 2 0 2
. . . x3x .    |  6 |  0  3  3 |  *  *  * N * * |  0  0  4  0  0 | 4 0 0
. . . x . o3*d |  3 |  0  3  0 |  *  *  * * N * |  0  0  0  4  0 | 0 4 0
. . . . x3o    |  3 |  0  0  3 |  *  *  * * * N |  0  0  0  0  4 | 0 0 4
---------------+----+----------+----------------+----------------+------
x4o . x . .      8 |  8  4  0 |  2  4  0 0 0 0 | 3N  *  *  *  * | 1 1 0
x4o . . x .      8 |  8  0  4 |  2  0  4 0 0 0 |  * 3N  *  *  * | 1 0 1
x . . x3x .     12 |  6  6  6 |  0  3  3 2 0 0 |  *  * 2N  *  * | 2 0 0
x . . x . o3*d   6 |  3  6  0 |  0  3  0 0 2 0 |  *  *  * 2N  * | 0 2 0
x . . . x3o      6 |  3  0  6 |  0  0  3 0 0 2 |  *  *  *  * 2N | 0 0 2
---------------+----+----------+----------------+----------------+------
x4o . x3x .     24 | 24 12 12 |  6 12 12 4 0 0 |  3  3  4  0  0 | N * *
x4o . x . o3*d  12 | 12 12  0 |  3 12  0 0 4 0 |  3  0  0  4  0 | * N *
x4o . . x3o     12 | 12  0 12 |  3  0 12 0 0 4 |  0  3  0  0  4 | * * N

((o4x4o)) ((x3x3o3*d))   (N → ∞)

. . . . . .    | 6N |   4  2  2 |  2  2   8   8  2  1  1 |  4  4  4  4  8  4  4 | 4 2 2 4 2 2
---------------+----+-----------+------------------------+----------------------+------------
. x . . . .    |  2 | 12N  *  * |  1  1   2   2  0  0  0 |  2  2  2  2  2  1  1 | 2 1 1 2 1 1
. . . x . .    |  2 |   * 6N  * |  0  0   4   0  1  1  0 |  2  0  2  0  4  4  0 | 2 2 0 2 2 0
. . . . x .    |  2 |   *  * 6N |  0  0   0   4  1  0  1 |  0  2  0  2  4  0  4 | 2 0 2 2 0 2
---------------+----+-----------+------------------------+----------------------+------------
o4x . . . .    |  4 |   4  0  0 | 3N  *   *   *  *  *  * |  2  2  0  0  0  0  0 | 2 1 1 0 0 0
. x4o . . .    |  4 |   4  0  0 |  * 3N   *   *  *  *  * |  0  0  2  2  0  0  0 | 0 0 0 2 1 1
. x . x . .    |  4 |   2  2  0 |  *  * 12N   *  *  *  * |  1  0  1  0  1  1  0 | 1 1 0 1 1 0
. x . . x .    |  4 |   2  0  2 |  *  *   * 12N  *  *  * |  0  1  0  1  1  0  1 | 1 0 1 1 0 1
. . . x3x .    |  6 |   0  3  3 |  *  *   *   * 2N  *  * |  0  0  0  0  4  0  0 | 2 0 0 2 0 0
. . . x . o3*d |  3 |   0  3  0 |  *  *   *   *  * 2N  * |  0  0  0  0  0  4  0 | 0 2 0 0 2 0
. . . . x3o    |  3 |   0  0  3 |  *  *   *   *  *  * 2N |  0  0  0  0  0  0  4 | 0 0 2 0 0 2
---------------+----+-----------+------------------------+----------------------+------------
o4x . x . .      8 |   8  4  0 |  2  0   4   0  0  0  0 | 3N  *  *  *  *  *  * | 1 1 0 0 0 0
o4x . . x .      8 |   8  0  4 |  2  0   0   4  0  0  0 |  * 3N  *  *  *  *  * | 1 0 1 0 0 0
. x4o x . .      8 |   8  4  0 |  0  2   4   0  0  0  0 |  *  * 3N  *  *  *  * | 0 0 0 1 1 0
. x4o . x .      8 |   8  0  4 |  0  2   0   4  0  0  0 |  *  *  * 3N  *  *  * | 0 0 0 1 0 1
. x . x3x .     12 |   6  6  6 |  0  0   3   3  2  0  0 |  *  *  *  * 4N  *  * | 1 0 0 1 0 0
. x . x . o3*d   6 |   3  6  0 |  0  0   3   0  0  2  0 |  *  *  *  *  * 4N  * | 0 1 0 0 1 0
. x . . x3o      6 |   3  0  6 |  0  0   0   3  0  0  2 |  *  *  *  *  *  * 4N | 0 0 1 0 0 1
---------------+----+-----------+------------------------+----------------------+------------
o4x . x3x .     24 |  24 12 12 |  6  0  12  12  4  0  0 |  3  3  0  0  4  0  0 | N * * * * *
o4x . x . o3*d  12 |  12 12  0 |  3  0  12   0  0  4  0 |  3  0  0  0  0  4  0 | * N * * * *
o4x . . x3o     12 |  12  0 12 |  3  0   0  12  0  0  4 |  0  3  0  0  0  0  4 | * * N * * *
. x4o x3x .     24 |  24 12 12 |  0  6  12  12  4  0  0 |  0  0  3  3  4  0  0 | * * * N * *
. x4o x . o3*d  12 |  12 12  0 |  0  3  12   0  0  4  0 |  0  0  3  0  0  4  0 | * * * * N *
. x4o . x3o     12 |  12  0 12 |  0  3   0  12  0  0  4 |  0  0  0  3  0  0  4 | * * * * * N

((x4o4x)) ((x3x3o3*d))   (N → ∞)

. . . . . .    | 12N |   2   2   2   2 |  1  2   4   4  1   4   4  2  1  1 |  2  2  4  4  4  2  2  2  2  4  2  2 | 2 1 1  4  2  2 2 1 1
---------------+-----+-----------------+-----------------------------------+-------------------------------------+---------------------
x . . . . .    |   2 | 12N   *   *   * |  1  1   2   2  0   0   0  0  0  0 |  2  2  2  2  2  1  1  0  0  0  0  0 | 2 1 1  2  1  1 0 0 0
. . x . . .    |   2 |   * 12N   *   * |  0  1   0   0  1   2   2  0  0  0 |  0  0  2  2  0  0  0  2  2  2  1  1 | 0 0 0  2  1  1 2 1 1
. . . x . .    |   2 |   *   * 12N   * |  0  0   2   0  0   2   0  1  1  0 |  1  0  2  0  2  2  0  1  0  2  2  0 | 1 1 0  2  2  0 1 1 0
. . . . x .    |   2 |   *   *   * 12N |  0  0   0   2  0   0   2  1  0  1 |  0  1  0  2  2  0  2  0  1  2  0  2 | 1 0 1  2  0  2 1 0 1
---------------+-----+-----------------+-----------------------------------+-------------------------------------+---------------------
x4o . . . .    |   4 |   4   0   0   0 | 3N  *   *   *  *   *   *  *  *  * |  2  2  0  0  0  0  0  0  0  0  0  0 | 2 1 1  0  0  0 0 0 0
x . x . . .    |   4 |   2   2   0   0 |  * 6N   *   *  *   *   *  *  *  * |  0  0  2  2  0  0  0  0  0  0  0  0 | 0 0 0  2  1  1 0 0 0
x . . x . .    |   4 |   2   0   2   0 |  *  * 12N   *  *   *   *  *  *  * |  1  0  1  0  1  1  0  0  0  0  0  0 | 1 1 0  1  1  0 0 0 0
x . . . x .    |   4 |   2   0   0   2 |  *  *   * 12N  *   *   *  *  *  * |  0  1  0  1  1  0  1  0  0  0  0  0 | 1 0 1  1  0  1 0 0 0
. o4x . . .    |   4 |   0   4   0   0 |  *  *   *   * 3N   *   *  *  *  * |  0  0  0  0  0  0  0  2  2  0  0  0 | 0 0 0  0  0  0 2 1 1
. . x x . .    |   4 |   0   2   2   0 |  *  *   *   *  * 12N   *  *  *  * |  0  0  1  0  0  0  0  1  0  1  1  0 | 0 0 0  1  1  0 1 1 0
. . x . x .    |   4 |   0   2   0   2 |  *  *   *   *  *   * 12N  *  *  * |  0  0  0  1  0  0  0  0  1  1  0  1 | 0 0 0  1  0  1 1 0 1
. . . x3x .    |   6 |   0   0   3   3 |  *  *   *   *  *   *   * 4N  *  * |  0  0  0  0  2  0  0  0  0  2  0  0 | 1 0 0  2  0  0 1 0 0
. . . x . o3*d |   3 |   0   0   3   0 |  *  *   *   *  *   *   *  * 4N  * |  0  0  0  0  0  2  0  0  0  0  2  0 | 0 1 0  0  2  0 0 1 0
. . . . o3x    |   3 |   0   0   0   3 |  *  *   *   *  *   *   *  *  * 4N |  0  0  0  0  0  0  2  0  0  0  0  2 | 0 0 1  0  0  2 0 0 1
---------------+-----+-----------------+-----------------------------------+-------------------------------------+---------------------
x4o . x . .       8 |   8   0   4   0 |  2  0   4   0  0   0   0  0  0  0 | 3N  *  *  *  *  *  *  *  *  *  *  * | 1 1 0  0  0  0 0 0 0
x4o . . x .       8 |   8   0   0   4 |  2  0   0   4  0   0   0  0  0  0 |  * 3N  *  *  *  *  *  *  *  *  *  * | 1 0 1  0  0  0 0 0 0
x . x x . .       8 |   4   4   4   0 |  0  2   2   0  0   2   0  0  0  0 |  *  * 6N  *  *  *  *  *  *  *  *  * | 0 0 0  1  1  0 0 0 0
x . x . x .       8 |   4   4   0   4 |  0  2   0   2  0   0   2  0  0  0 |  *  *  * 6N  *  *  *  *  *  *  *  * | 0 0 0  1  0  1 0 0 0
x . . x3x .      12 |   6   0   6   6 |  0  0   3   3  0   0   0  2  0  0 |  *  *  *  * 4N  *  *  *  *  *  *  * | 1 0 0  1  0  0 0 0 0
x . . x . o3*d    6 |   3   0   6   0 |  0  0   3   0  0   0   0  0  2  0 |  *  *  *  *  * 4N  *  *  *  *  *  * | 0 1 0  0  1  0 0 0 0
x . . . x3o       6 |   3   0   0   6 |  0  0   0   3  0   0   0  0  0  2 |  *  *  *  *  *  * 4N  *  *  *  *  * | 0 0 1  0  0  1 0 0 0
. o4x x . .       8 |   0   8   4   0 |  0  0   0   0  2   4   0  0  0  0 |  *  *  *  *  *  *  * 3N  *  *  *  * | 0 0 0  0  0  0 1 1 0
. o4x . x .       8 |   0   8   0   4 |  0  0   0   0  2   0   4  0  0  0 |  *  *  *  *  *  *  *  * 3N  *  *  * | 0 0 0  0  0  0 1 0 1
. . x x3x .      12 |   0   6   6   6 |  0  0   0   0  0   3   3  2  0  0 |  *  *  *  *  *  *  *  *  * 4N  *  * | 0 0 0  1  0  0 1 0 0
. . x x . o3*d    6 |   0   3   6   0 |  0  0   0   0  0   3   0  0  2  0 |  *  *  *  *  *  *  *  *  *  * 4N  * | 0 0 0  0  1  0 0 1 0
. . x . x3o       6 |   0   3   0   6 |  0  0   0   0  0   0   3  0  0  2 |  *  *  *  *  *  *  *  *  *  *  * 4N | 0 0 0  0  0  1 0 0 1
---------------+-----+-----------------+-----------------------------------+-------------------------------------+---------------------
x4o . x3x .      24 |  24   0  12  12 |  6  0  12  12  0   0   0  4  0  0 |  3  3  0  0  4  0  0  0  0  0  0  0 | N * *  *  *  * * * *
x4o . x . o3*d   12 |  12   0  12   0 |  3  0  12   0  0   0   0  0  4  0 |  3  0  0  0  0  4  0  0  0  0  0  0 | * N *  *  *  * * * *
x4o . . x3o      12 |  12   0   0  12 |  3  0   0  12  0   0   0  0  0  4 |  0  3  0  0  0  0  4  0  0  0  0  0 | * * N  *  *  * * * *
x . x x3x .      24 |  12  12  12  12 |  0  6   6   6  0   6   6  4  0  0 |  0  0  3  3  2  0  0  0  0  2  0  0 | * * * 2N  *  * * * *
x . x x . o3*d   12 |   6   6  12   0 |  0  3   6   0  0   6   0  0  4  0 |  0  0  3  0  0  2  0  0  0  0  2  0 | * * *  * 2N  * * * *
x . x . x3o      12 |   6   6   0  12 |  0  3   0   6  0   0   6  0  0  4 |  0  0  0  3  0  0  2  0  0  0  0  2 | * * *  *  * 2N * * *
. o4x x3x .      24 |   0  24  12  12 |  0  0   0   0  6  12  12  4  0  0 |  0  0  0  0  0  0  0  3  3  4  0  0 | * * *  *  *  * N * *
. o4x x . o3*d   12 |   0  12  12   0 |  0  0   0   0  3  12   0  0  4  0 |  0  0  0  0  0  0  0  3  0  0  4  0 | * * *  *  *  * * N *
. o4x . x3o      12 |   0  12   0  12 |  0  0   0   0  3   0  12  0  0  4 |  0  0  0  0  0  0  0  0  3  0  0  4 | * * *  *  *  * * * N

((x∞o)) ((x∞o)) ((o3x6o))   (N → ∞)

...

((x∞x)) ((x∞o)) ((o3x6o))   (N → ∞)

...

((x∞x)) ((x∞x)) ((o3x6o))   (N → ∞)

...

((x∞o)) ((x∞o)) ((x3x3o3*e))   (N → ∞)

...

((x∞x)) ((x∞o)) ((x3x3o3*e))   (N → ∞)

...

((x∞x)) ((x∞x)) ((x3x3o3*e))   (N → ∞)

...

© 2004-2026
top of page