Acronym tiggidtixhi Name truncated great ditrigonary hexacosihecatonicosachoron Cross sections ` ©` Circumradius sqrt(7) = 2.645751 Colonel of regiment tissidtixhi Externallinks

As abstract polytope tiggidtixhi is isomorphic to tissidtixhi, thereby replacing the pentagons by pentagrams, resp. replacing gidtid by sidtid and replacing ti by tiggy. – As such tiggidtixhi is a lieutenant.

Incidence matrix according to Dynkin symbol

```x3x3o3/2o5*b

. . .   .    | 2400 |    1    6 |    6    3    3 |   3   3   1
-------------+------+-----------+----------------+------------
x . .   .    |    2 | 1200    * |    6    0    0 |   3   3   0
. x .   .    |    2 |    * 7200 |    1    1    1 |   1   1   1
-------------+------+-----------+----------------+------------
x3x .   .    |    6 |    3    3 | 2400    *    * |   1   1   0
. x3o   .    |    3 |    0    3 |    * 2400    * |   1   0   1
. x .   o5*b |    5 |    0    5 |    *    * 1440 |   0   1   1
-------------+------+-----------+----------------+------------
x3x3o   .    ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x .   o5*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3o3/2o5*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```

```x3x3/2o3o5*b

. .   . .    | 2400 |    1    6 |    6    3    3 |   3   3   1
-------------+------+-----------+----------------+------------
x .   . .    |    2 | 1200    * |    6    0    0 |   3   3   0
. x   . .    |    2 |    * 7200 |    1    1    1 |   1   1   1
-------------+------+-----------+----------------+------------
x3x   . .    |    6 |    3    3 | 2400    *    * |   1   1   0
. x3/2o .    |    3 |    0    3 |    * 2400    * |   1   0   1
. x   . o5*b |    5 |    0    5 |    *    * 1440 |   0   1   1
-------------+------+-----------+----------------+------------
x3x3/2o .    ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x   . o5*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3/2o3o5*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```

```x3x3o3o5/4*b

. . . .      | 2400 |    1    6 |    6    3    3 |   3   3   1
-------------+------+-----------+----------------+------------
x . . .      |    2 | 1200    * |    6    0    0 |   3   3   0
. x . .      |    2 |    * 7200 |    1    1    1 |   1   1   1
-------------+------+-----------+----------------+------------
x3x . .      |    6 |    3    3 | 2400    *    * |   1   1   0
. x3o .      |    3 |    0    3 |    * 2400    * |   1   0   1
. x . o5/4*b |    5 |    0    5 |    *    * 1440 |   0   1   1
-------------+------+-----------+----------------+------------
x3x3o .      ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x . o5/4*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3o3o5/4*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```

```x3x3/2o3/2o5/4*b

. .   .   .      | 2400 |    1    6 |    6    3    3 |   3   3   1
-----------------+------+-----------+----------------+------------
x .   .   .      |    2 | 1200    * |    6    0    0 |   3   3   0
. x   .   .      |    2 |    * 7200 |    1    1    1 |   1   1   1
-----------------+------+-----------+----------------+------------
x3x   .   .      |    6 |    3    3 | 2400    *    * |   1   1   0
. x3/2o   .      |    3 |    0    3 |    * 2400    * |   1   0   1
. x   .   o5/4*b |    5 |    0    5 |    *    * 1440 |   0   1   1
-----------------+------+-----------+----------------+------------
x3x3/2o   .      ♦   12 |    6   12 |    4    4    0 | 600   *   *
x3x   .   o5/4*b ♦   60 |   30   60 |   20    0   12 |   * 120   *
. x3/2o3/2o5/4*b ♦   20 |    0   60 |    0   20   12 |   *   * 120
```