| Acronym | sidtid |
| TOCID symbol | ID* |
| Name |
small ditrigonary icosidodecahedron, holosnub dodecahedron, vertex figure of sidtixhi |
| VRML |
|
| Circumradius | sqrt(3)/2 = 0.866025 |
|
Inradius wrt. {5/2} | sqrt[(5+2 sqrt(5))/20] = 0.688191 |
|
Inradius wrt. {3} | sqrt(5/12) = 0.645497 |
| Vertex figure | [(5/2,3)3] |
|
Snub derivation / VRML |
|
| General of army | doe |
| Colonel of regiment | (is itself locally convex – other uniform polyhedral members: ditdid gidtid – uniform compound member: rhom – other edge facetings) |
| Dual | stai |
| Dihedral angles |
|
| Face vector | 20, 60, 32 |
| Confer |
|
|
External links |
|
As abstract polytope sidtid is isomorphic to gidtid, thereby replacing pentagrams by pentagons.
Sidtid also can be obtained as a blend of gidtid with ditdid, blending out the pentagons.
Incidence matrix according to Dynkin symbol
o
3 / \ 3
x---o
5/2
x5/2o3o3*a . . . | 20 | 6 | 3 3 -----------+----+----+------ x . . | 2 | 60 | 1 1 -----------+----+----+------ x5/2o . | 5 | 5 | 12 * x . o3*a | 3 | 3 | * 20
o
3/2 / \ 3
x---o
5/3
o3/2x5/3o3*a . . . | 20 | 6 | 3 3 ----------+----+----+------ . x . | 2 | 60 | 1 1 ----------+----+----+------ o3/2x . | 3 | 3 | 20 * . x5/3o | 5 | 5 | * 12
o
3 / \ 3/2
x---o
5/3
o3/2o5/3x3*a . . . | 20 | 6 | 3 3 -------------+----+----+------ . . x | 2 | 60 | 1 1 -------------+----+----+------ . o5/3x | 5 | 5 | 12 * o . x3*a | 3 | 3 | * 20
o
3/2 / \ 3/2
x---o
5/2
x3/2o3/2o5/2*a . . . | 20 | 6 | 3 3 ---------------+----+----+------ x . . | 2 | 60 | 1 1 ---------------+----+----+------ x3/2o . | 3 | 3 | 20 * x . o5/2*a | 5 | 5 | * 12
β5o3o
both( . . . ) | 20 | 6 | 3 3
--------------+----+----+------
sefa( β5o . ) | 2 | 60 | 1 1
--------------+----+----+------
β5o . ♦ 5 | 5 | 12 *
sefa( β5o3o ) | 3 | 3 | * 20
starting figure: x5o3o
© 2004-2025 | top of page |