Acronym ditdid
TOCID symbol DE*
Name ditrigonal dodecadodecahedron,
vertex figure of dittady
 
 © ©
Circumradius sqrt(3)/2 = 0.866025
Vertex figure [(5/3,5)3]
General of army doe
Colonel of regiment sidtid
Dihedral angles
  • between {5} and {5/2}:   arccos(1/sqrt(5)) = 63.434949°
Confer
Grünbaumian relatives:
sidtid+ditdid   sidtid+ditdid+gidtid   ditdid+gidtid   cadditradid   2ditdid+5cube  
External
links
hedrondude   wikipedia   polytopewiki   WikiChoron   mathworld

As abstract polytope ditdid is automorph, thereby interchanging the roles of pentagons and (retrograde) pentagrams. As such it could be seen to be a non-regular realization of the regular abstract polyhedron {5,6}4 (where the index just denotes the size of the corresponding Petrie polygon).

Ditdid also can be obtained as a blend of sidtid with gidtid, blending out the triangles.

This polyhedron is an edge-faceting of the small ditrigonal icosidodecahedron (sidtid).


Incidence matrix according to Dynkin symbol

x5/3o3o5*a

.   . .    | 20 |  6 |  3  3
-----------+----+----+------
x   . .    |  2 | 60 |  1  1
-----------+----+----+------
x5/3o .    |  5 |  5 | 12  *
x   . o5*a |  5 |  5 |  * 12

o3/2o5/2x5*a

.   .   .    | 20 |  6 |  3  3
-------------+----+----+------
.   .   x    |  2 | 60 |  1  1
-------------+----+----+------
.   o5/2x    |  5 |  5 | 12  *
o   .   x5*a |  5 |  5 |  * 12

o5/4x5/2o3*a

.   .   . | 20 |  6 |  3  3
----------+----+----+------
.   x   . |  2 | 60 |  1  1
----------+----+----+------
o5/4x   . |  5 |  5 | 12  *
.   x5/2o |  5 |  5 |  * 12

x5/4o3/2o5/3*a

.   .   .      | 20 |  6 |  3  3
---------------+----+----+------
x   .   .      |  2 | 60 |  1  1
---------------+----+----+------
x5/4o   .      |  5 |  5 | 12  *
x   .   o5/3*a |  5 |  5 |  * 12

© 2004-2020
top of page