Acronym sidtixhi Name small ditrigonary hexacosihecatonicosachoron Cross sections ` ©` Circumradius 1 Coordinates (1, 0, 0, 0)                                         & all permutations, all changes of sign (vertex inscribed q-hex) (1/2, 1/2, 1/2, 1/2)                             & all permutations, all changes of sign (vertex inscribed tes) ((1+sqrt(5))/4, (sqrt(5)-1)/4, 1/4, 0)   & all even permutations, all changes of sign (vertex inscribed v-sadi) General of army ex Colonel of regiment sishi Confer Grünbaumian relatives: sidtixhi+dox   decompositions: pt || sidtixhi Externallinks

As abstract polytope sidtixhi is isomorphic to gidtixhi, thereby replacing gike by ike.

If considered with according densities, then sidtixhi can be thought of as the external blend of 600 pens + 120 gikepies. This decomposition is described as the degenerate segmentoteron ox3oo3oo3oo5/2*b&#x.

Incidence matrix according to Dynkin symbol

```x3o3o3o5/2*b

. . . .      | 120 ♦   20 |   60 |  20  12
-------------+-----+------+------+--------
x . . .      |   2 | 1200 |    6 |   3   3
-------------+-----+------+------+--------
x3o . .      |   3 |    3 | 2400 |   1   1
-------------+-----+------+------+--------
x3o3o .      ♦   4 |    6 |    4 | 600   *
x3o . o5/2*b ♦  12 |   30 |   20 |   * 120
```

```x3o3o3/2o5/3*b

. . .   .      | 120 ♦   20 |   60 |  20  12
---------------+-----+------+------+--------
x . .   .      |   2 | 1200 |    6 |   3   3
---------------+-----+------+------+--------
x3o .   .      |   3 |    3 | 2400 |   1   1
---------------+-----+------+------+--------
x3o3o   .      ♦   4 |    6 |    4 | 600   *
x3o .   o5/3*b ♦  12 |   30 |   20 |   * 120
```

```x3o3/2o3o5/3*b

. .   . .      | 120 ♦   20 |   60 |  20  12
---------------+-----+------+------+--------
x .   . .      |   2 | 1200 |    6 |   3   3
---------------+-----+------+------+--------
x3o   . .      |   3 |    3 | 2400 |   1   1
---------------+-----+------+------+--------
x3o3/2o .      ♦   4 |    6 |    4 | 600   *
x3o   . o5/3*b ♦  12 |   30 |   20 |   * 120
```

```x3o3/2o3/2o5/2*b

. .   .   .      | 120 ♦   20 |   60 |  20  12
-----------------+-----+------+------+--------
x .   .   .      |   2 | 1200 |    6 |   3   3
-----------------+-----+------+------+--------
x3o   .   .      |   3 |    3 | 2400 |   1   1
-----------------+-----+------+------+--------
x3o3/2o   .      ♦   4 |    6 |    4 | 600   *
x3o   .   o5/2*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3o3o5/2*b

.   . . .      | 120 ♦   20 |   60 |  20  12
---------------+-----+------+------+--------
x   . . .      |   2 | 1200 |    6 |   3   3
---------------+-----+------+------+--------
x3/2o . .      |   3 |    3 | 2400 |   1   1
---------------+-----+------+------+--------
x3/2o3o .      ♦   4 |    6 |    4 | 600   *
x3/2o . o5/2*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3o3/2o5/3*b

.   . .   .      | 120 ♦   20 |   60 |  20  12
-----------------+-----+------+------+--------
x   . .   .      |   2 | 1200 |    6 |   3   3
-----------------+-----+------+------+--------
x3/2o .   .      |   3 |    3 | 2400 |   1   1
-----------------+-----+------+------+--------
x3/2o3o   .      ♦   4 |    6 |    4 | 600   *
x3/2o .   o5/3*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3/2o3o5/3*b

.   .   . .      | 120 ♦   20 |   60 |  20  12
-----------------+-----+------+------+--------
x   .   . .      |   2 | 1200 |    6 |   3   3
-----------------+-----+------+------+--------
x3/2o   . .      |   3 |    3 | 2400 |   1   1
-----------------+-----+------+------+--------
x3/2o3/2o .      ♦   4 |    6 |    4 | 600   *
x3/2o   . o5/3*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3/2o3/2o5/2*b

.   .   .   .      | 120 ♦   20 |   60 |  20  12
-------------------+-----+------+------+--------
x   .   .   .      |   2 | 1200 |    6 |   3   3
-------------------+-----+------+------+--------
x3/2o   .   .      |   3 |    3 | 2400 |   1   1
-------------------+-----+------+------+--------
x3/2o3/2o   .      ♦   4 |    6 |    4 | 600   *
x3/2o   .   o5/2*b ♦  12 |   30 |   20 |   * 120
```