Acronym gidtixhi Name great ditrigonary hexacosihecatonicosachoron Cross sections ` ©` Circumradius 1 Coordinates (1, 0, 0, 0)                                         & all permutations, all changes of sign (vertex inscribed q-hex) (1/2, 1/2, 1/2, 1/2)                             & all permutations, all changes of sign (vertex inscribed tes) ((1+sqrt(5))/4, (sqrt(5)-1)/4, 1/4, 0)   & all even permutations, all changes of sign (vertex inscribed v-sadi) General of army ex Colonel of regiment sishi Confer Grünbaumian relatives: gidtixhi+dox   decompositions: pt || gidtixhi Externallinks

As abstract polytope gidtixhi is isomorphic to sidtixhi, thereby replacing ike by gike.

If considered with according densities, then gidtixhi can be thought of as the external blend of 600 pens + 120 ikepies. This decomposition is described as the degenerate segmentoteron ox3oo3oo3/2oo5*b&#x.

Incidence matrix according to Dynkin symbol

```x3o3o3o5/4*b

. . . .      | 120 ♦   20 |   60 |  20  12
-------------+-----+------+------+--------
x . . .      |   2 | 1200 |    6 |   3   3
-------------+-----+------+------+--------
x3o . .      |   3 |    3 | 2400 |   1   1
-------------+-----+------+------+--------
x3o3o .      ♦   4 |    6 |    4 | 600   *
x3o . o5/4*b ♦  12 |   30 |   20 |   * 120
```

```x3o3o3/2o5*b

. . .   .    | 120 ♦   20 |   60 |  20  12
-------------+-----+------+------+--------
x . .   .    |   2 | 1200 |    6 |   3   3
-------------+-----+------+------+--------
x3o .   .    |   3 |    3 | 2400 |   1   1
-------------+-----+------+------+--------
x3o3o   .    ♦   4 |    6 |    4 | 600   *
x3o .   o5*b ♦  12 |   30 |   20 |   * 120
```

```x3o3/2o3o5*b

. .   . .    | 120 ♦   20 |   60 |  20  12
-------------+-----+------+------+--------
x .   . .    |   2 | 1200 |    6 |   3   3
-------------+-----+------+------+--------
x3o   . .    |   3 |    3 | 2400 |   1   1
-------------+-----+------+------+--------
x3o3/2o .    ♦   4 |    6 |    4 | 600   *
x3o   . o5*b ♦  12 |   30 |   20 |   * 120
```

```x3o3/2o3/2o5/4*b

. .   .   .      | 120 ♦   20 |   60 |  20  12
-----------------+-----+------+------+--------
x .   .   .      |   2 | 1200 |    6 |   3   3
-----------------+-----+------+------+--------
x3o   .   .      |   3 |    3 | 2400 |   1   1
-----------------+-----+------+------+--------
x3o3/2o   .      ♦   4 |    6 |    4 | 600   *
x3o   .   o5/4*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3o3o5/4*b

.   . . .      | 120 ♦   20 |   60 |  20  12
---------------+-----+------+------+--------
x   . . .      |   2 | 1200 |    6 |   3   3
---------------+-----+------+------+--------
x3/2o . .      |   3 |    3 | 2400 |   1   1
---------------+-----+------+------+--------
x3/2o3o .      ♦   4 |    6 |    4 | 600   *
x3/2o . o5/4*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3o3/2o5*b

.   . .   .    | 120 ♦   20 |   60 |  20  12
---------------+-----+------+------+--------
x   . .   .    |   2 | 1200 |    6 |   3   3
---------------+-----+------+------+--------
x3/2o .   .    |   3 |    3 | 2400 |   1   1
---------------+-----+------+------+--------
x3/2o3o   .    ♦   4 |    6 |    4 | 600   *
x3/2o .   o5*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3/2o3o5*b

.   .   . .    | 120 ♦   20 |   60 |  20  12
---------------+-----+------+------+--------
x   .   . .    |   2 | 1200 |    6 |   3   3
---------------+-----+------+------+--------
x3/2o   . .    |   3 |    3 | 2400 |   1   1
---------------+-----+------+------+--------
x3/2o3/2o .    ♦   4 |    6 |    4 | 600   *
x3/2o   . o5*b ♦  12 |   30 |   20 |   * 120
```

```x3/2o3/2o3/2o5/4*b

.   .   .   .      | 120 ♦   20 |   60 |  20  12
-------------------+-----+------+------+--------
x   .   .   .      |   2 | 1200 |    6 |   3   3
-------------------+-----+------+------+--------
x3/2o   .   .      |   3 |    3 | 2400 |   1   1
-------------------+-----+------+------+--------
x3/2o3/2o   .      ♦   4 |    6 |    4 | 600   *
x3/2o   .   o5/4*b ♦  12 |   30 |   20 |   * 120
```