Acronym tisbat
Name triangular-square duoprismatic tetracomb

Incidence matrix according to Dynkin symbol

((x3o6o)) ((x4o4o))   (N → ∞)

. . . . . . |  N |  6  4 |  6 24 4 | 24 24 | 24
------------+----+-------+---------+-------+---
x . . . . . |  2 | 3N  * |  2  4 0 |  8  4 |  8
. . . x . . |  2 |  * 2N |  0  6 2 |  6 12 | 12
------------+----+-------+---------+-------+---
x3o . . . . |  3 |  3  0 | 2N  * * |  4  0 |  4
x . . x . . |  4 |  2  2 |  * 6N * |  2  2 |  4
. . . x4o . |  4 |  0  4 |  *  * N |  0  6 |  6
------------+----+-------+---------+-------+---
x3o . x . .   6 |  6  3 |  2  3 0 | 4N  * |  2
x . . x4o .   8 |  4  8 |  0  4 2 |  * 3N |  2
------------+----+-------+---------+-------+---
x3o . x4o .  12 | 12 12 |  4 12 3 |  4  3 | 2N

((x3o6o)) ((o4x4o))   (N → ∞)

. . . . . . | 2N |  6  4 |  6  24 2 2 | 24 12 12 | 12 12
------------+----+-------+------------+----------+------
x . . . . . |  2 | 6N  * |  2   4 0 0 |  8  2  2 |  4  4
. . . . x . |  2 |  * 4N |  0   6 1 1 |  6  6  6 |  6  6
------------+----+-------+------------+----------+------
x3o . . . . |  3 |  3  0 | 4N   * * * |  4  0  0 |  2  2
x . . . x . |  4 |  2  2 |  * 12N * * |  2  1  1 |  2  2
. . . o4x . |  4 |  0  4 |  *   * N * |  0  6  0 |  6  0
. . . . x4o |  4 |  0  4 |  *   * * N |  0  0  6 |  0  6
------------+----+-------+------------+----------+------
x3o . . x .   6 |  6  3 |  2   3 0 0 | 8N  *  * |  1  1
x . . o4x .   8 |  4  8 |  0   4 2 0 |  * 3N  * |  2  0
x . . . x4o   8 |  4  8 |  0   4 0 2 |  *  * 3N |  0  2
------------+----+-------+------------+----------+------
x3o . o4x .  12 | 12 12 |  4  12 3 0 |  4  3  0 | 2N  *
x3o . . x4o  12 | 12 12 |  4  12 0 3 |  4  0  3 |  * 2N

((x3o6o)) ((x4o4x))   (N → ∞)

. . . . . . | 4N |   6  2  2 |  6  12  12 1  2 1 | 12 12  6 12  6 |  6 12  6
------------+----+-----------+-------------------+----------------+---------
x . . . . . |  2 | 12N  *  * |  2   2   2 0  0 0 |  4  4  1  2  1 |  2  4  2
. . . x . . |  2 |   * 4N  * |  0   6   0 1  1 0 |  6  0  6  6  0 |  6  6  0
. . . . . x |  2 |   *  * 4N |  0   0   6 0  1 1 |  0  6  0  6  6 |  0  6  6
------------+----+-----------+-------------------+----------------+---------
x3o . . . . |  3 |   3  0  0 | 8N   *   * *  * * |  2  2  0  0  0 |  1  2  1
x . . x . . |  4 |   2  2  0 |  * 12N   * *  * * |  2  0  1  1  0 |  2  2  0
x . . . . x |  4 |   2  0  2 |  *   * 12N *  * * |  0  2  0  1  1 |  0  2  2
. . . x4o . |  4 |   0  4  0 |  *   *   * N  * * |  0  0  6  0  0 |  6  0  0
. . . x . x |  4 |   0  2  2 |  *   *   * * 2N * |  0  0  0  6  0 |  0  6  0
. . . . o4x |  4 |   0  0  4 |  *   *   * *  * N |  0  0  0  0  6 |  0  0  6
------------+----+-----------+-------------------+----------------+---------
x3o . x . .   6 |   6  3  0 |  2   3   0 0  0 0 | 8N  *  *  *  * |  1  1  0
x3o . . . x   6 |   6  0  3 |  2   0   3 0  0 0 |  * 8N  *  *  * |  0  1  1
x . . x4o .   8 |   4  8  0 |  0   4   0 2  0 0 |  *  * 3N  *  * |  2  0  0
x . . x . x   8 |   4  4  4 |  0   2   2 0  2 0 |  *  *  * 6N  * |  0  2  0
x . . . o4x   8 |   4  0  8 |  0   0   4 0  0 2 |  *  *  *  * 3N |  0  0  2
------------+----+-----------+-------------------+----------------+---------
x3o . x4o .  12 |  12 12  0 |  4  12   0 3  0 0 |  4  0  3  0  0 | 2N  *  *
x3o . x . x  12 |  12  6  6 |  4   6   6 0  3 0 |  2  2  0  3  0 |  * 4N  *
x3o . . o4x  12 |  12  0 12 |  4   0  12 0  0 3 |  0  4  0  0  3 |  *  * 2N

((x4o4o)) ((x3o3o3*d))   (N → ∞)

. . . . . .    |  N |  4  6 | 4 24 3 3 | 24 12 12 | 12 12
---------------+----+-------+----------+----------+------
x . . . . .    |  2 | 2N  * | 2  6 0 0 | 12  3  3 |  6  6
. . . x . .    |  2 |  * 3N | 0  4 1 1 |  4  4  4 |  4  4
---------------+----+-------+----------+----------+------
x4o . . . .    |  4 |  4  0 | N  * * * |  6  0  0 |  3  3
x . . x . .    |  4 |  2  2 | * 6N * * |  2  1  1 |  2  2
. . . x3o .    |  3 |  0  3 | *  * N * |  0  4  0 |  4  0
. . . x . o3*d |  3 |  0  3 | *  * * N |  0  0  4 |  0  4
---------------+----+-------+----------+----------+------
x4o . x . .      8 |  8  4 | 2  4 0 0 | 3N  *  * |  1  1
x . . x3o .      6 |  3  6 | 0  3 2 0 |  * 2N  * |  2  0
x . . x . o3*d   6 |  3  6 | 0  3 0 2 |  *  * 2N |  0  2
---------------+----+-------+----------+----------+------
x4o . x3o .     12 | 12 12 | 3 12 4 0 |  3  4  0 |  N  *
x4o . x . o3*d  12 | 12 12 | 3 12 0 4 |  3  0  4 |  *  N

((o4x4o)) ((x3o3o3*d))   (N → ∞)

. . . . . .    | 2N |  4  6 | 2 2  24  3  3 | 12 12 12 12 | 6 6 6 6
---------------+----+-------+---------------+-------------+--------
. x . . . .    |  2 | 4N  * | 1 1   6  0  0 |  6  6  3  3 | 3 3 3 3
. . . x . .    |  2 |  * 6N | 0 0   4  1  1 |  2  2  4  4 | 2 2 2 2
---------------+----+-------+---------------+-------------+--------
o4x . . . .    |  4 |  4  0 | N *   *  *  * |  6  0  0  0 | 3 3 0 0
. x4o . . .    |  4 |  4  0 | * N   *  *  * |  0  6  0  0 | 0 0 3 3
. x . x . .    |  4 |  2  2 | * * 12N  *  * |  1  1  1  1 | 1 1 1 1
. . . x3o .    |  3 |  0  3 | * *   * 2N  * |  0  0  4  0 | 2 0 2 0
. . . x . o3*d |  3 |  0  3 | * *   *  * 2N |  0  0  0  4 | 0 2 0 2
---------------+----+-------+---------------+-------------+--------
o4x . x . .      8 |  8  4 | 2 0   4  0  0 | 3N  *  *  * | 1 1 0 0
. x4o x . .      8 |  8  4 | 0 2   4  0  0 |  * 3N  *  * | 0 0 1 1
. x . x3o .      6 |  3  6 | 0 0   3  2  0 |  *  * 4N  * | 1 0 1 0
. x . x . o3*d   6 |  3  6 | 0 0   3  0  2 |  *  *  * 4N | 0 1 0 1
---------------+----+-------+---------------+-------------+--------
o4x . x3o .     12 | 12 12 | 3 0  12  4  0 |  3  0  4  0 | N * * *
o4x . x . o3*d  12 | 12 12 | 3 0  12  0  4 |  3  0  0  4 | * N * *
. x4o x3o .     12 | 12 12 | 0 3  12  4  0 |  0  3  4  0 | * * N *
. x4o x . o3*d  12 | 12 12 | 0 3  12  0  4 |  0  3  0  4 | * * * N

((x4o4x)) ((x3o3o3*d))   (N → ∞)

. . . . . .    | 4N |  2  2   6 | 1  2  12 1  12  3  3 |  6 12  6  6  6  6  6 | 3 3  6  6 3 3
---------------+----+-----------+----------------------+----------------------+--------------
x . . . . .    |  2 | 4N  *   * | 1  1   6 0   0  0  0 |  6  6  3  3  0  0  0 | 3 3  3  3 0 0
. . x . . .    |  2 |  * 4N   * | 0  1   0 1   6  0  0 |  0  6  0  0  6  3  3 | 0 0  3  3 3 3
. . . x . .    |  2 |  *  * 12N | 0  0   2 0   2  1  1 |  1  2  2  2  1  2  2 | 1 1  2  2 1 1
---------------+----+-----------+----------------------+----------------------+--------------
x4o . . . .    |  4 |  4  0   0 | N  *   * *   *  *  * |  6  0  0  0  0  0  0 | 3 3  0  0 0 0
x . x . . .    |  4 |  2  2   0 | * 2N   * *   *  *  * |  0  6  0  0  0  0  0 | 0 0  3  3 0 0
x . . x . .    |  4 |  2  0   2 | *  * 12N *   *  *  * |  1  1  1  1  0  0  0 | 1 1  1  1 0 0
. o4x . . .    |  4 |  0  4   0 | *  *   * N   *  *  * |  0  0  0  0  6  0  0 | 0 0  0  0 3 3
. . x x . .    |  4 |  0  2   2 | *  *   * * 12N  *  * |  0  1  0  0  1  1  1 | 0 0  1  1 1 1
. . . x3o .    |  3 |  0  0   3 | *  *   * *   * 4N  * |  0  0  2  0  0  2  0 | 1 0  2  0 1 0
. . . x . o3*d |  3 |  0  0   3 | *  *   * *   *  * 4N |  0  0  0  2  0  0  2 | 0 1  0  2 0 1
---------------+----+-----------+----------------------+----------------------+--------------
x4o . x . .      8 |  8  0   4 | 2  0   4 0   0  0  0 | 3N  *  *  *  *  *  * | 1 1  0  0 0 0
x . x x . .      8 |  4  4   4 | 0  2   2 0   2  0  0 |  * 6N  *  *  *  *  * | 0 0  1  1 0 0
x . . x3o .      6 |  3  0   6 | 0  0   3 0   0  2  0 |  *  * 4N  *  *  *  * | 1 0  1  0 0 0
x . . x . o3*d   6 |  3  0   6 | 0  0   3 0   0  0  2 |  *  *  * 4N  *  *  * | 0 1  0  1 0 0
. o4x x . .      8 |  0  8   4 | 0  0   0 2   4  0  0 |  *  *  *  * 3N  *  * | 0 0  0  0 1 1
. . x x3o .      6 |  0  3   6 | 0  0   0 0   3  2  0 |  *  *  *  *  * 4N  * | 0 0  1  0 1 0
. . x x . o3*d   6 |  0  3   6 | 0  0   0 0   3  0  2 |  *  *  *  *  *  * 4N | 0 0  0  1 0 1
---------------+----+-----------+----------------------+----------------------+--------------
x4o . x3o .     12 | 12  0  12 | 3  0  12 0   0  4  0 |  3  0  4  0  0  0  0 | N *  *  * * *
x4o . x . o3*d  12 | 12  0  12 | 3  0  12 0   0  0  4 |  3  0  0  4  0  0  0 | * N  *  * * *
x . x x3o .     12 |  6  6  12 | 0  3   6 0   6  4  0 |  0  3  2  0  0  2  0 | * * 2N  * * *
x . x x . o3*d  12 |  6  6  12 | 0  3   6 0   6  0  4 |  0  3  0  2  0  0  2 | * *  * 2N * *
. o4x x3o .     12 |  0 12  12 | 0  0   0 3  12  4  0 |  0  0  0  0  3  4  0 | * *  *  * N *
. o4x x . o3*d  12 |  0 12  12 | 0  0   0 3  12  0  4 |  0  0  0  0  3  0  4 | * *  *  * * N

((x∞o)) ((x∞o)) ((x3o6o))   (N → ∞)

...

((x∞x)) ((x∞o)) ((x3o6o))   (N → ∞)

...

((x∞x)) ((x∞x)) ((x3o6o))   (N → ∞)

...

((x∞o)) ((x∞o)) ((x3o3o3*e))   (N → ∞)

...

((x∞x)) ((x∞o)) ((x3o3o3*e))   (N → ∞)

...

((x∞x)) ((x∞x)) ((x3o3o3*e))   (N → ∞)

...

© 2004-2026
top of page