Acronym iddip, K-4.90 Name icosidodecahedron prism Segmentochoron display Cross sections ` ©` Circumradius sqrt[7+2 sqrt(5)]/2 = 1.693527 General of army (is itself convex) Colonel of regiment (is itself locally convex) Externallinks

As abstract polytope iddip is isomorphic to giddip, thereby replacing id by gid and pip by stip.

Incidence matrix according to Dynkin symbol

```x o3x5o

. . . . | 60 |  1   4 |  4  2  2 |  2  2 1
--------+----+--------+----------+--------
x . . . |  2 | 30   * |  4  0  0 |  2  2 0
. . x . |  2 |  * 120 |  1  1  1 |  1  1 1
--------+----+--------+----------+--------
x . x . |  4 |  2   2 | 60  *  * |  1  1 0
. o3x . |  3 |  0   3 |  * 40  * |  1  0 1
. . x5o |  5 |  0   5 |  *  * 24 |  0  1 1
--------+----+--------+----------+--------
x o3x . ♦  6 |  3   6 |  3  2  0 | 20  * *
x . x5o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3x5o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o3x5/4o

. . .   . | 60 |  1   4 |  4  2  2 |  2  2 1
----------+----+--------+----------+--------
x . .   . |  2 | 30   * |  4  0  0 |  2  2 0
. . x   . |  2 |  * 120 |  1  1  1 |  1  1 1
----------+----+--------+----------+--------
x . x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o3x   . |  3 |  0   3 |  * 40  * |  1  0 1
. . x5/4o |  5 |  0   5 |  *  * 24 |  0  1 1
----------+----+--------+----------+--------
x o3x   . ♦  6 |  3   6 |  3  2  0 | 20  * *
x . x5/4o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3x5/4o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o3/2x5o

. .   . . | 60 |  1   4 |  4  2  2 |  2  2 1
----------+----+--------+----------+--------
x .   . . |  2 | 30   * |  4  0  0 |  2  2 0
. .   x . |  2 |  * 120 |  1  1  1 |  1  1 1
----------+----+--------+----------+--------
x .   x . |  4 |  2   2 | 60  *  * |  1  1 0
. o3/2x . |  3 |  0   3 |  * 40  * |  1  0 1
. .   x5o |  5 |  0   5 |  *  * 24 |  0  1 1
----------+----+--------+----------+--------
x o3/2x . ♦  6 |  3   6 |  3  2  0 | 20  * *
x .   x5o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3/2x5o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o3/2x5/4o

. .   .   . | 60 |  1   4 |  4  2  2 |  2  2 1
------------+----+--------+----------+--------
x .   .   . |  2 | 30   * |  4  0  0 |  2  2 0
. .   x   . |  2 |  * 120 |  1  1  1 |  1  1 1
------------+----+--------+----------+--------
x .   x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o3/2x   . |  3 |  0   3 |  * 40  * |  1  0 1
. .   x5/4o |  5 |  0   5 |  *  * 24 |  0  1 1
------------+----+--------+----------+--------
x o3/2x   . ♦  6 |  3   6 |  3  2  0 | 20  * *
x .   x5/4o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3/2x5/4o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```oo3xx5oo&#x   → height = 1
(id || id)

o.3o.5o.    | 30  * |  4  1  0 |  2  2  4  0  0 | 1  2  2 0
.o3.o5.o    |  * 30 |  0  1  4 |  0  0  4  2  2 | 0  2  2 1
------------+-------+----------+----------------+----------
.. x. ..    |  2  0 | 60  *  * |  1  1  1  0  0 | 1  1  1 0
oo3oo5oo&#x |  1  1 |  * 30  * |  0  0  4  0  0 | 0  2  2 0
.. .x ..    |  0  2 |  *  * 60 |  0  0  1  1  1 | 0  1  1 1
------------+-------+----------+----------------+----------
o.3x. ..    |  3  0 |  3  0  0 | 20  *  *  *  * | 1  1  0 0
.. x.5o.    |  5  0 |  5  0  0 |  * 12  *  *  * | 1  0  1 0
.. xx ..&#x |  2  2 |  1  2  1 |  *  * 60  *  * | 0  1  1 0
.o3.x ..    |  0  3 |  0  0  3 |  *  *  * 20  * | 0  1  0 1
.. .x5.o    |  0  5 |  0  0  5 |  *  *  *  * 12 | 0  0  1 1
------------+-------+----------+----------------+----------
o.3x.5o.    ♦ 30  0 | 60  0  0 | 20 12  0  0  0 | 1  *  * *
oo3xx ..&#x ♦  3  3 |  3  3  3 |  1  0  3  1  0 | * 20  * *
.. xx5oo&#x ♦  5  5 |  5  5  5 |  0  1  5  0  1 | *  * 12 *
.o3.x5.o    ♦  0 30 |  0  0 60 |  0  0  0 20 12 | *  *  * 1
```