Acronym sphixhi
Name small prismatohecatonicosihexacosihecatonicosachoron
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: grid sidditdid siid tiggy toe trip sid tipathi 120 120 0 120 0 1200 sphixhi 0 0 120 120 600 1200
& others)
External

As abstract polychoron sphixhi is isomorph to giphixhi. Thereby replacing pentagrams by pentagons, resp. ti and giid.

Incidence matrix according to Dynkin symbol

```x3x3x3o5/2*b

. . . .      | 7200 |    1    2    2 |    2    2    2    1    1 |   2   1    1   1
-------------+------+----------------+--------------------------+-----------------
x . . .      |    2 | 3600    *    * |    2    2    0    0    0 |   2   1    1   0
. x . .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1    0   1
. . x .      |    2 |    *    * 7200 |    0    1    1    0    1 |   1   0    1   1
-------------+------+----------------+--------------------------+-----------------
x3x . .      |    6 |    3    3    0 | 2400    *    *    *    * |   1   1    0   0
x . x .      |    4 |    2    0    2 |    * 3600    *    *    * |   1   0    1   0
. x3x .      |    6 |    0    3    3 |    *    * 2400    *    * |   1   0    0   1
. x . o5/2*b |    5 |    0    5    0 |    *    *    * 1440    * |   0   1    0   1
. . x3o      |    3 |    0    0    3 |    *    *    *    * 2400 |   0   0    1   1
-------------+------+----------------+--------------------------+-----------------
x3x3x .      ♦   24 |   12   12   12 |    4    6    4    0    0 | 600   *    *   *
x3x . o5/2*b ♦   60 |   30   60    0 |   20    0    0   12    0 |   * 120    *   *
x . x3o      ♦    6 |    3    0    6 |    0    3    0    0    2 |   *   * 1200   *
. x3x3o5/2*b ♦   60 |    0   60   60 |    0    0   20   12   20 |   *   *    * 120
```

```x3x3x3/2o5/3*b

. . .   .      | 7200 |    1    2    2 |    2    2    2    1    1 |   2   1    1   1
---------------+------+----------------+--------------------------+-----------------
x . .   .      |    2 | 3600    *    * |    2    2    0    0    0 |   2   1    1   0
. x .   .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1    0   1
. . x   .      |    2 |    *    * 7200 |    0    1    1    0    1 |   1   0    1   1
---------------+------+----------------+--------------------------+-----------------
x3x .   .      |    6 |    3    3    0 | 2400    *    *    *    * |   1   1    0   0
x . x   .      |    4 |    2    0    2 |    * 3600    *    *    * |   1   0    1   0
. x3x   .      |    6 |    0    3    3 |    *    * 2400    *    * |   1   0    0   1
. x .   o5/3*b |    5 |    0    5    0 |    *    *    * 1440    * |   0   1    0   1
. . x3/2o      |    3 |    0    0    3 |    *    *    *    * 2400 |   0   0    1   1
---------------+------+----------------+--------------------------+-----------------
x3x3x   .      ♦   24 |   12   12   12 |    4    6    4    0    0 | 600   *    *   *
x3x .   o5/3*b ♦   60 |   30   60    0 |   20    0    0   12    0 |   * 120    *   *
x . x3/2o      ♦    6 |    3    0    6 |    0    3    0    0    2 |   *   * 1200   *
. x3x3/2o5/3*b ♦   60 |    0   60   60 |    0    0   20   12   20 |   *   *    * 120
```