Acronym bautip, J50 Name biaugmented triangular prism ` © ©` Vertex figures [34], [35], [33,4] Coordinates (1/2, 0, 1/sqrt(3))                 & all changes of sign in 1st coord. (biaugmentation rim) (0, A/2, A/sqrt(12))             & all changes of sign in 2nd coord. (augmentation apices) (1/2, 1/2, -1/sqrt(12))          & all changes of sign in 1st & 2nd coord. (opposite {4}) where A = (1+sqrt(6))/2 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles between {3} and {3} (across biaugmentation rim):   arccos[-(1+2 sqrt(6))/6] = 169.471221° between {3} and {3} (across augmentation rim):   arccos[-sqrt(2/3)] = 144.735610° between {3} and {4} (across augmentation rim):   arccos[-(sqrt(6)-1)/sqrt(12)] = 114.735610° between {3} and {3} (within squippy-part):   arccos(-1/3) = 109.471221° between {3} and {4} (within trip-part):   90° Confer related Johnson solids: squippy   autip   tautip   blend-components: squippy   trip   general polytopal classes: Johnson solids   bistratic lace towers Externallinks

Incidence matrix according to Dynkin symbol

```xox oAx&#xt   → height(1,2) = (3-sqrt(6))/sqrt(48) = 0.079459
height(2,3) = (3+sqrt(6))/sqrt(48) = 0.786566
where A = (1+sqrt(6))/2 = 1.724745
(line || (pseudo) A-line || {4})

o.. o..     | 2 * * | 1 2 2 0 0 0 | 2 2 1 0 0
.o. .o.     | * 2 * | 0 2 0 2 0 0 | 1 2 0 1 0
..o ..o     | * * 4 | 0 0 1 1 1 1 | 0 1 1 1 1
------------+-------+-------------+----------
x.. ...     | 2 0 0 | 1 * * * * * | 2 0 0 0 0
oo. oo.&#x  | 1 1 0 | * 4 * * * * | 1 1 0 0 0
o.o o.o&#x  | 1 0 1 | * * 4 * * * | 0 1 1 0 0
.oo .oo&#x  | 0 1 1 | * * * 4 * * | 0 1 0 1 0
..x ...     | 0 0 2 | * * * * 2 * | 0 0 1 0 1
... ..x     | 0 0 2 | * * * * * 2 | 0 0 0 1 1
------------+-------+-------------+----------
xo. ...&#x  | 2 1 0 | 1 2 0 0 0 0 | 2 * * * *
ooo ooo&#x  | 1 1 1 | 0 1 1 1 0 0 | * 4 * * *
... o.x&#x  | 1 0 2 | 0 0 2 0 1 0 | * * 2 * *
.ox ...&#x  | 0 1 2 | 0 0 0 2 0 1 | * * * 2 *
..x ..x     | 0 0 4 | 0 0 0 0 2 2 | * * * * 1
```