Acronym biscrox Name bistratic icosahedron-first cap of rectified hexacosachoron Circumradius sqrt[5+2 sqrt(5)] = 3.077684 Lace cityin approx. ASCII-art ``` o5x x5x x5o o5o o5f x5f x5o F5o x5x o5F o5x f5x f5o o5o o5x x5x x5o | | | \ | | | +-- gyepip | | +-- srid | +---------- id +-------------- ike ``` ``` x2o o2f f2x o2f x2o -- ike o2o x2f F2x f2F oV2Vo f2F F2x x2f o2o -- id x2x o2F F2f Af2oV V2F xB2Bx F2A xB2Bx V2F Af2oV F2f o2F x2x -- srid (where: F=ff=f+x, V=2f, A=F+x=f+u=f+2x, B=V+x=2f+x) ``` Dihedral angles at {3} between oct and oct:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between oct and squippy:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between gyepip and oct:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between gyepip and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between ike and oct:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {4} between squippy and srid:   arccos[1/sqrt(2)] = 45° at {3} between oct and srid:   arccos[sqrt(10)/4] = 37.761244° at {5} between gyepip and srid:   arccos[(1+sqrt(5))/4] = 36° Confer uniform relative: rox   related CRFs: pybiscrox   arspabd biscrox   arsted biscrox   related segmentochora: ikaid   idasrid   general polytopal classes: bistratic lace towers

At the first glance this CRF just looks as it would be a mere bistratic stack of segmentochora. But here the peppies of the upper segment happen to become corealmic with the paps of the lower. Thus in here they blend into gyepips instead.

Incidence matrix according to Dynkin symbol

```xox3oxo5oox&#xt   → height(1,2) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = 1/2
(ike || pseudo id || srid)

o..3o..5o..     | 12  *  * ♦  5  5  0   0  0  0 |  5  5  5  0  0  0  0  0  0  0 | 1  5  1  0  0 0
.o.3.o.5.o.     |  * 30  * ♦  0  2  4   4  0  0 |  0  1  4  2  2  4  2  0  0  0 | 0  2  2  2  1 0
..o3..o5..o     |  *  * 60 |  0  0  0   2  2  2 |  0  0  0  0  2  1  2  1  2  1 | 0  0  1  1  2 1
----------------+----------+--------------------+-------------------------------+----------------
x.. ... ...     |  2  0  0 | 30  *  *   *  *  * |  2  1  0  0  0  0  0  0  0  0 | 1  2  0  0  0 0
oo.3oo.5oo.&#x  |  1  1  0 |  * 60  *   *  *  * |  0  1  2  0  0  0  0  0  0  0 | 0  2  1  0  0 0
... .x. ...     |  0  2  0 |  *  * 60   *  *  * |  0  0  1  1  0  1  0  0  0  0 | 0  1  1  1  0 0
.oo3.oo5.oo&#x  |  0  1  1 |  *  *  * 120  *  * |  0  0  0  0  1  1  1  0  0  0 | 0  0  1  1  1 0
..x ... ...     |  0  0  2 |  *  *  *   * 60  * |  0  0  0  0  1  0  0  1  1  0 | 0  0  0  1  1 1
... ... ..x     |  0  0  2 |  *  *  *   *  * 60 |  0  0  0  0  0  0  1  0  1  1 | 0  0  1  0  1 1
----------------+----------+--------------------+-------------------------------+----------------
x..3o.. ...     |  3  0  0 |  3  0  0   0  0  0 | 20  *  *  *  *  *  *  *  *  * | 1  1  0  0  0 0
xo. ... ...&#x  |  2  1  0 |  1  2  0   0  0  0 |  * 30  *  *  *  *  *  *  *  * | 0  2  0  0  0 0
... ox. ...&#x  |  1  2  0 |  0  2  1   0  0  0 |  *  * 60  *  *  *  *  *  *  * | 0  1  1  0  0 0
.o.3.x. ...     |  0  3  0 |  0  0  3   0  0  0 |  *  *  * 20  *  *  *  *  *  * | 0  1  0  1  0 0
.ox ... ...&#x  |  0  1  2 |  0  0  0   2  1  0 |  *  *  *  * 60  *  *  *  *  * | 0  0  0  1  1 0
... .xo ...&#x  |  0  2  1 |  0  0  1   2  0  0 |  *  *  *  *  * 60  *  *  *  * | 0  0  1  1  0 0
... ... .ox&#x  |  0  1  2 |  0  0  0   2  0  1 |  *  *  *  *  *  * 60  *  *  * | 0  0  1  0  1 0
..x3..o ...     |  0  0  3 |  0  0  0   0  3  0 |  *  *  *  *  *  *  * 20  *  * | 0  0  0  1  0 1
..x ... ..x     |  0  0  4 |  0  0  0   0  2  2 |  *  *  *  *  *  *  *  * 30  * | 0  0  0  0  1 1
... ..o5..x     |  0  0  5 |  0  0  0   0  0  5 |  *  *  *  *  *  *  *  *  * 12 | 0  0  1  0  0 1
----------------+----------+--------------------+-------------------------------+----------------
x..3o..5o..     ♦ 12  0  0 | 30  0  0   0  0  0 | 20  0  0  0  0  0  0  0  0  0 | 1  *  *  *  * *
xo.3ox. ...&#x  ♦  3  3  0 |  3  6  3   0  0  0 |  1  3  3  1  0  0  0  0  0  0 | * 20  *  *  * *
... oxo5oox&#xt ♦  1  5  5 |  0  5  5  10  0  5 |  0  0  5  0  0  5  5  0  0  1 | *  * 12  *  * *
.ox3.xo ...&#x  ♦  0  3  3 |  0  0  3   6  3  0 |  0  0  0  1  3  3  0  1  0  0 | *  *  * 20  * *
.ox ... .ox&#x  ♦  0  1  4 |  0  0  0   4  2  2 |  0  0  0  0  2  0  2  0  1  0 | *  *  *  * 30 *
..x3..o5..x     ♦  0  0 60 |  0  0  0   0 60 60 |  0  0  0  0  0  0  0 20 30 12 | *  *  *  *  * 1
```