Acronym cyted srit Name cyclotetradiminished small rhombitesseract,cyclotetraugmented octagonal duoprism Circumradius sqrt[2+sqrt(2)] = 1.847759 Dihedral angles at {3} between squippy and trip:   150° at {8} between op and op:   135° at {4} between op and squippy:   135° at {4} between op and trip:   arccos(-1/sqrt(3)) = 125.264390° at {4} between sirco and trip:   arccos(-1/sqrt(3)) = 125.264390° at {3} between sirco and squippy:   120° at {4} between op and sirco:   90° at {4} between sirco and sirco:   90° Pattern(parts of total size:8x8 squares) ```A---3---A---4---A---3---A---4---A-... | \ : / | | \ : / | | 1 B 1 1 B 1 1 | / : \ | | / : \ | | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | | \ : / | | 1 B 1 1 B 1 1 | / : \ | | / : \ | | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | | \ : / | | ``` Confer uniform relative: srit   odip   segmentochora: {4} || op   related CRFs: cyte gysrit   bicyte gysrit

The symmetry of srit will be broken by an inscribed odip. Here the squares of odip are used for separation: in one of these halves the corresponding srit remainder will be placed (octs thereby will be halved into squippy), while in the other half one ring of 8 ops from odip is to be placed.

This polychoron can be either obtained by diminishing a cyclic ring of 4 sirco-sirco squares, or by augmenting alternate ops of one ring of ops within odip by {4} || op.

Incidence matrix according to Dynkin symbol

```ox4wx ox4xx&#zx

o.4o. o.4o.     | 16  * |  2  4  0  0  0  0 | 1  2  2  4 0  0  0  0  0 |  1  2 2 0 0  vertices of B-squares
.o4.o .o4.o     |  * 64 |  0  1  1  1  1  1 | 0  1  1  1 1  1  1  1  1 |  1  1 1 1 1  odip vertices (A)
----------------+-------+-------------------+--------------------------+------------
.. .. .. x.     |  2  0 | 16  *  *  *  *  * | 1  0  0  2 0  0  0  0  0 |  0  1 2 0 0  (:)
oo4oo oo4oo&#x  |  1  1 |  * 64  *  *  *  * | 0  1  1  1 0  0  0  0  0 |  1  1 1 0 0  (/,\)
.x .. .. ..     |  0  2 |  *  * 32  *  *  * | 0  1  0  0 1  1  1  0  0 |  1  1 0 1 1  (3)
.. .x .. ..     |  0  2 |  *  *  * 32  *  * | 0  0  0  0 1  0  0  1  1 |  0  0 1 1 1  (4)
.. .. .x ..     |  0  2 |  *  *  *  * 32  * | 0  0  1  0 0  1  0  1  0 |  1  0 1 1 0  (1)
.. .. .. .x     |  0  2 |  *  *  *  *  * 32 | 0  0  0  1 0  0  1  0  1 |  0  1 1 0 1  (2)
----------------+-------+-------------------+--------------------------+------------
.. .. o.4x.     |  4  0 |  4  0  0  0  0  0 | 4  *  *  * *  *  *  *  * |  0  0 2 0 0  B-squares
ox .. .. ..&#x  |  1  2 |  0  2  1  0  0  0 | * 32  *  * *  *  *  *  * |  1  1 0 0 0
.. .. ox ..&#x  |  1  2 |  0  2  0  0  1  0 | *  * 32  * *  *  *  *  * |  1  0 1 0 0
.. .. .. xx&#x  |  2  2 |  1  2  0  0  0  1 | *  *  * 32 *  *  *  *  * |  0  1 1 0 0
.x4.x .. ..     |  0  8 |  0  0  4  4  0  0 | *  *  *  * 8  *  *  *  * |  0  0 0 1 1
.x .. .x ..     |  0  4 |  0  0  2  0  2  0 | *  *  *  * * 16  *  *  * |  1  0 0 1 0
.x .. .. .x     |  0  4 |  0  0  2  0  0  2 | *  *  *  * *  * 16  *  * |  0  1 0 0 1
.. .x .x ..     |  0  4 |  0  0  0  2  2  0 | *  *  *  * *  *  * 16  * |  0  0 1 1 0
.. .x .. .x     |  0  4 |  0  0  0  2  0  2 | *  *  *  * *  *  *  * 16 |  0  0 1 0 1
----------------+-------+-------------------+--------------------------+------------
ox .. ox ..&#x  ♦  1  4 |  0  4  2  0  2  0 | 0  2  2  0 0  1  0  0  0 | 16  * * * *
ox .. .. xx&#x  ♦  2  4 |  1  4  2  0  0  2 | 0  2  0  2 0  0  1  0  0 |  * 16 * * *
.. wx ox4xx&#zx ♦  8 16 |  8 16  0  8  8  8 | 2  0  8  8 0  0  0  4  4 |  *  * 4 * *
.x4.x .x ..     ♦  0 16 |  0  0  8  8  8  0 | 0  0  0  0 2  4  0  4  0 |  *  * * 4 *
.x4.x .. .x     ♦  0 16 |  0  0  8  8  0  8 | 0  0  0  0 2  0  4  0  4 |  *  * * * 4
```