| Acronym | esquidpy, J15 |
| Name | elongated square dipyramid |
| VRML |
|
| Vertex figure | [34], [32,42] |
|
Lace city in approx. ASCII-art |
o o o q q o o o |
x x w x x | |
| Coordinates |
|
| General of army | (is itself convex) |
| Colonel of regiment | (is itself locally convex) |
| Dihedral angles |
|
| Face vector | 10, 20, 12 |
| Confer |
|
|
External links |
|
Incidence matrix according to Dynkin symbol
oxxo4oooo&#xt → height(1,2) = height(3,4) = 1/sqrt(2) = 0.707107
height(2,3) = 1
(pt || pseudo {4} || pseudo {4} || pt)
o...4o... | 1 * * * | 4 0 0 0 0 | 4 0 0
.o..4.o.. | * 4 * * | 1 2 1 0 0 | 2 2 0
..o.4..o. | * * 4 * | 0 0 1 2 1 | 0 2 2
...o4...o | * * * 1 | 0 0 0 0 4 | 0 0 4
-------------+---------+-----------+------
oo..4oo..&#x | 1 1 0 0 | 4 * * * * | 2 0 0
.x.. .... | 0 2 0 0 | * 4 * * * | 1 1 0
.oo.4.oo.&#x | 0 1 1 0 | * * 4 * * | 0 2 0
..x. .... | 0 0 2 0 | * * * 4 * | 0 1 1
..oo4..oo&#x | 0 0 1 1 | * * * * 4 | 0 0 2
-------------+---------+-----------+------
ox.. ....&#x | 1 2 0 0 | 2 1 0 0 0 | 4 * *
.xx. ....&#x | 0 2 2 0 | 0 1 2 1 0 | * 4 *
..xo ....&#x | 0 0 2 1 | 0 0 0 1 2 | * * 4
or o...4o... & | 2 * | 4 0 0 | 4 0 .o..4.o.. & | * 8 | 1 2 1 | 2 2 ---------------+-----+-------+---- oo..4oo..&#x & | 1 1 | 8 * * | 2 0 .x.. .... & | 0 2 | * 8 * | 1 1 .oo.4.oo.&#x | 0 2 | * * 4 | 0 2 ---------------+-----+-------+---- ox.. ....&#x & | 1 2 | 2 1 0 | 8 * .xx. ....&#x | 0 4 | 0 2 2 | * 4
xox xwx&#xt → both heights = 1/2
({4} || pseudo w-line || {4})
o.. o.. & | 8 * | 1 1 1 1 | 1 1 1 1
.o. .o. | * 2 | 0 0 4 0 | 0 2 2 0
-------------+-----+---------+--------
x.. ... & | 2 0 | 4 * * * | 1 1 0 0
... x.. & | 2 0 | * 4 * * | 1 0 0 1
oo. oo.&#x & | 1 1 | * * 8 * | 0 1 1 0
o.o o.o&#x | 2 0 | * * * 4 | 0 0 1 1
-------------+-----+---------+--------
x.. x.. & | 4 0 | 2 2 0 0 | 2 * * *
xo. ...&#x & | 2 1 | 1 0 2 0 | * 4 * *
ooo ooo&#x | 2 1 | 0 0 2 1 | * * 4 *
... x.x&#x | 4 0 | 0 2 0 2 | * * * 2
x(xw)x o(qo)o&#xt → both heights = 1/sqrt(2) = 0.707107 (line || pseudo diagonally elongated {4} || line) o(..). o(..). & | 4 * * | 1 2 1 0 0 | 2 2 .(o.). .(o.). | * 4 * | 0 2 0 1 1 | 2 2 .(.o). .(.o). | * * 2 | 0 0 2 0 2 | 0 4 -------------------+-------+-----------+---- x(..). .(..). & | 2 0 0 | 2 * * * * | 2 0 o(o.). o(o.).&#x & | 1 1 0 | * 8 * * * | 1 1 o(.o). o(.o).&#x & | 1 0 1 | * * 4 * * | 0 2 .(x.). .(..). | 0 2 0 | * * * 2 * | 2 0 .(oo). .(oo).&#x | 0 1 1 | * * * * 4 | 0 2 -------------------+-------+-----------+---- x(x.). .(..).&#x & | 2 2 0 | 1 2 0 1 0 | 4 * o(oo). o(oo).&#x & | 1 1 1 | 0 1 1 0 1 | * 8
wx ox4oo&#zx → height = 0 (tegum sum of w-line and cube) o. o.4o. | 2 * | 4 0 0 | 0 4 .o .o4.o | * 8 | 1 1 2 | 2 2 ------------+-----+-------+---- oo oo4oo&#x | 1 1 | 8 * * | 0 2 .x .. .. | 0 2 | * 4 * | 2 0 .. .x .. | 0 2 | * * 8 | 1 1 ------------+-----+-------+---- .x .x ..&#x | 0 4 | 0 2 2 | 4 * .. ox ..&#x | 1 2 | 2 0 1 | * 8
qoo2oqo2xxw&#zx → all heights = 0
(tegum sum of 2 orthogonal (q,x)-{4} and an intersection-parallel w-line)
o..2o..2o.. | 4 * * | 1 2 1 0 0 | 2 2
.o.2.o.2.o. | * 4 * | 0 2 0 1 1 | 2 2
..o2..o2..o | * * 2 | 0 0 2 0 2 | 0 4
---------------+-------+-----------+----
... ... x.. | 2 0 0 | 2 * * * * | 2 0
oo.2oo.2oo.&#x | 1 1 0 | * 8 * * * | 1 1
o.o2o.o2o.o&#x | 1 0 1 | * * 4 * * | 0 2
... ... .x. | 0 2 0 | * * * 2 * | 2 0
.oo2.oo2.oo&#x | 0 1 1 | * * * * 4 | 0 2
---------------+-------+-----------+----
... ... xx.&#x | 2 2 0 | 1 2 0 1 0 | 4 *
ooo2ooo2ooo&#x | 1 1 1 | 0 1 1 0 1 | * 8
© 2004-2025 | top of page |