Acronym hexepe
Name hexadecachoric pennene,
hexadecachoron-pyramid pyramid-pyramid-pyramid,
tetrahedron atop fully orthogonal hexadecachoron,
1/4-lune of diacosipentacontahexazetton
Circumradius 1/sqrt(2) = 0.707107
Face vector 12, 62, 180, 321, 361, 252, 102, 20
Confer
uniform relative:
ek  
general polytopal classes:
segmentozetta   pennene  

Incidence matrix according to Dynkin symbol

xo3oo3oo ox3oo3oo4oo&#x   → height = 1/sqrt(8) = 0.353553
(pyramid product of tet with hex)

o.3o.3o. o.3o.3o.4o.    | 4 *  3  8  0 | 3 24 24  0 | 1 24  72  32  0 | 8 72  96 16 0 | 24  96 48 1 | 32 48 3 | 16 3
.o3.o3.o .o3.o3.o4.o    | * 8  0  4  6 | 0  6 24 12 | 0  4  36  48  8 | 1 24  72 32 1 |  6  48 48 4 | 12 32 6 |  8 4
------------------------+-----+---------+------------+-----------------+---------------+-------------+---------+-----
x. .. .. .. .. .. ..    | 2 0 | 6  *  *  2  8  0  0 | 1 16  24   0  0 | 8 48  32  0 0 | 24  64 16 0 | 32 32 1 | 16 2
oo3oo3oo oo3oo3oo4oo&#x | 1 1 | * 32  *  0  3  6  0 | 0  3  16  12  0 | 1 18  36  8 0 |  6  36 24 1 | 12 24 3 |  8 3
.. .. .. .x .. .. ..    | 0 2 | *  * 24  0  0  4  4 | 0  0   6  16  4 | 0  4  24 16 1 |  1  16 24 4 |  4 16 6 |  4 4
------------------------+-----+---------+------------+-----------------+---------------+-------------+---------+-----
x.3o. .. .. .. .. ..    | 3 0 | 3  0  0 | 4  *  *  *  1  8   0   0  0 | 8 24   0  0 0 | 24  32  0 0 | 32 16 0 | 16 1
xo .. .. .. .. .. ..&#x | 2 1 | 1  2  0 | * 48  *  *  0  2   6   0  0 | 1 12  12  0 0 |  6  24 24 0 | 12 16 1 |  8 2
.. .. .. ox .. .. ..&#x | 1 2 | 0  2  1 | *  * 96  *  0  0   3   4  0 | 0  3  12  4 0 |  1  12 12 1 |  4 12 3 |  4 3
.. .. .. .x3.o .. ..    | 0 3 | 0  0  3 | *  *  * 32  0  0   0   4  2 | 0  0   6  8 1 |  0   4 12 4 |  1  8 6 |  2 4
------------------------+-----+---------+------------+-----------------+---------------+-------------+---------+-----
x.3o.3o. .. .. .. ..     4 0 | 6  0  0 | 4  0  0  0 | 1  *   *   *  *  8  0   0  0 0 | 24   0  0 0 | 32  0 0 | 16 0
xo3oo .. .. .. .. ..&#x  3 1 | 3  3  0 | 1  3  0  0 | * 32   *   *  *  1  6   0  0 0 |  6  12  0 0 | 12  8 0 |  8 1
xo .. .. ox .. .. ..&#x  2 2 | 1  4  1 | 0  2  2  0 | *  * 144   *  *  0  2   4  0 0 |  1   8  4 0 |  4  8 1 |  4 2
.. .. .. ox3oo .. ..&#x  1 3 | 0  3  3 | 0  0  3  1 | *  *   * 128  *  0  0   3  2 0 |  0   3  6 1 |  1  6 3 |  2 3
.. .. .. .x3.o3.o ..     0 4 | 0  0  6 | 0  0  0  4 | *  *   *   * 16  0  0   0  4 1 |  0   0  6 4 |  0  4 6 |  1 4
------------------------+-----+---------+------------+-----------------+---------------+-------------+---------+-----
xo3oo3oo .. .. .. ..&#x  4 1 | 6  4  0 | 4  6  0  0 | 1  4   0   0  0 | 8  *   *  * *   6   0  0 0 | 12  0 0 |  8 0
xo3oo .. ox .. .. ..&#x  3 2 | 3  6  1 | 1  6  3  0 | 0  2   3   0  0 | * 96   *  * *   1   4  0 0 |  4  4 0 |  4 1
xo .. .. ox3oo .. ..&#x  2 3 | 1  6  3 | 0  3  6  1 | 0  0   3   2  0 | *  * 192  * *   0   2  2 0 |  1  4 1 |  2 2
.. .. .. ox3oo3oo ..&#x  1 4 | 0  4  6 | 0  0  6  4 | 0  0   0   4  1 | *  *   * 64 *   0   0  3 1 |  0  3 3 |  1 3
.. .. .. .x3.o3.o4.o     0 8 | 0  0 24 | 0  0  0 32 | 0  0   0   0 16 | *  *   *  * 1   0   0  0 4 |  0  0 6 |  0 4
------------------------+-----+---------+------------+-----------------+---------------+-------------+---------+-----
xo3oo3oo ox .. .. ..&#x  4 2 | 6  8  1 | 4 12  4  0 | 1  8   6   0  0 | 2  4   0  0 0 | 24   *  * * |  4  0 0 |  4 0
xo3oo .. ox3oo .. ..&#x  3 3 | 3  9  3 | 1  9  9  1 | 0  3   9   3  0 | 0  3   3  0 0 |  * 128  * * |  1  2 0 |  2 1
xo .. .. ox3oo3oo ..&#x  2 4 | 1  8  6 | 0  4 12  4 | 0  0   6   8  1 | 0  0   4  2 0 |  *   * 96 * |  0  2 1 |  1 2
.. .. .. ox3oo3oo4oo&#x  1 8 | 0  8 24 | 0  0 24 32 | 0  0   0  32 16 | 0  0   0 16 1 |  *   *  * 4 |  0  0 3 |  0 3
------------------------+-----+---------+------------+-----------------+---------------+-------------+---------+-----
xo3oo3oo ox3oo .. ..&#x  4 3 | 6 12  3 | 4 18 12  1 | 1 12  18   4  0 | 3 12   6  0 0 |  3   4  0 0 | 32  * * |  2 0
xo3oo .. ox3oo3oo ..&#x  3 4 | 3 12  6 | 1 12 18  4 | 0  4  18  12  1 | 0  6  12  3 0 |  0   4  3 0 |  * 64 * |  1 1
xo .. .. ox3oo3oo4oo&#x  2 8 | 1 16 24 | 0  8 48 32 | 0  0  24  64 16 | 0  0  32 32 1 |  0   0 16 2 |  *  * 6 |  0 2
------------------------+-----+---------+------------+-----------------+---------------+-------------+---------+-----
xo3oo3oo ox3oo3oo ..&#x  4 4 | 6 16  6 | 4 24 24  4 | 1 16  36  16  1 | 4 24  24  4 0 |  6  16  6 0 |  4  4 0 | 16 *
xo3oo .. ox3oo3oo4oo&#x  3 8 | 3 24 24 | 1 24 72 32 | 0  8  72  96 16 | 0 24  96 48 1 |  0  32 48 3 |  0 16 3 |  * 4

xo3oo3oo ox3oo3oo *e3oo&#x   → height = 1/sqrt(8) = 0.353553
(pyramid product of tet with hex)

o.3o.3o. o.3o.3o. *e3o.    | 4 *  3  8  0 | 3 24 24  0 | 1 24  72  32 0 0 | 8 72  96  8  8 0 | 24  96 24 24 1 | 32 24 24 3 | 8 8 3
.o3.o3.o .o3.o3.o *e3.o    | * 8  0  4  6 | 0  6 24 12 | 0  4  36  48 4 4 | 1 24  72 16 16 1 |  6  48 24 24 4 | 12 16 16 6 | 4 4 4
---------------------------+-----+---------+------------+------------------+------------------+----------------+------------+------
x. .. .. .. .. ..    ..    | 2 0 | 6  *  *  2  8  0  0 | 1 16  24   0 0 0 | 8 48  32  0  0 0 | 24  64  8  8 0 | 32 16 16 1 | 8 8 2
oo3oo3oo oo3oo3oo *e3oo&#x | 1 1 | * 32  *  0  3  6  0 | 0  3  16  12 0 0 | 1 18  36  4  4 0 |  6  36 12 12 1 | 12 12 12 3 | 4 4 3
.. .. .. .x .. ..    ..    | 0 2 | *  * 24  0  0  4  4 | 0  0   6  16 2 2 | 0  4  24  8  8 1 |  1  16 12 12 4 |  4  8  8 6 | 2 2 4
---------------------------+-----+---------+------------+------------------+------------------+----------------+------------+------
x.3o. .. .. .. ..    ..    | 3 0 | 3  0  0 | 4  *  *  *  1  8   0   0 0 0 | 8 24   0  0  0 0 | 24  32  0  0 0 | 32  8  8 0 | 8 8 1
xo .. .. .. .. ..    ..&#x | 2 1 | 1  2  0 | * 48  *  *  0  2   6   0 0 0 | 1 12  12  0  0 0 |  6  24  4  4 0 | 12  8  8 1 | 4 4 2
.. .. .. ox .. ..    ..&#x | 1 2 | 0  2  1 | *  * 96  *  0  0   3   4 0 0 | 0  3  12  2  2 0 |  1  12  6  6 1 |  4  6  6 3 | 2 2 3
.. .. .. .x3.o ..    ..    | 0 3 | 0  0  3 | *  *  * 32  0  0   0   4 1 1 | 0  0   6  4  4 1 |  0   4  6  6 4 |  1  4  4 6 | 1 1 4
---------------------------+-----+---------+------------+------------------+------------------+----------------+------------+------
x.3o.3o. .. .. ..    ..     4 0 | 6  0  0 | 4  0  0  0 | 1  *   *   * * *  8  0   0  0  0 0 | 24   0  0  0 0 | 32  0  0 0 | 4 4 0
xo3oo .. .. .. ..    ..&#x  3 1 | 3  3  0 | 1  3  0  0 | * 32   *   * * *  1  6   0  0  0 0 |  6  12  0  0 0 | 12  4  4 0 | 4 4 1
xo .. .. ox .. ..    ..&#x  2 2 | 1  4  1 | 0  2  2  0 | *  * 144   * * *  0  2   4  0  0 0 |  1   8  2  2 0 |  4  4  4 1 | 2 2 2
.. .. .. ox3oo ..    ..&#x  1 3 | 0  3  3 | 0  0  3  1 | *  *   * 128 * *  0  0   3  1  1 0 |  0   3  3  3 1 |  1  3  3 3 | 1 1 3
.. .. .. .x3.o3.o    ..     0 4 | 0  0  6 | 0  0  0  4 | *  *   *   * 8 *  0  0   0  4  0 1 |  0   0  6  0 4 |  0  4  0 6 | 1 0 4
.. .. .. .x3.o .. *3.o      0 4 | 0  0  6 | 0  0  0  4 | *  *   *   * * 8  0  0   0  0  4 1 |  0   0  0  6 4 |  0  0  4 6 | 0 1 4
---------------------------+-----+---------+------------+------------------+------------------+----------------+------------+------
xo3oo3oo .. .. ..    ..&#x  4 1 | 6  4  0 | 4  6  0  0 | 1  4   0   0 0 0 | 8  *   *  *  * *   6   0  0  0 0 | 12  0  0 0 | 4 4 0
xo3oo .. ox .. ..    ..&#x  3 2 | 3  6  1 | 1  6  3  0 | 0  2   3   0 0 0 | * 96   *  *  * *   1   4  0  0 0 |  4  2  2 0 | 2 2 1
xo .. .. ox3oo ..    ..&#x  2 3 | 1  6  3 | 0  3  6  1 | 0  0   3   2 0 0 | *  * 192  *  * *   0   2  1  1 0 |  1  2  2 1 | 1 1 2
.. .. .. ox3oo3oo    ..&#x  1 4 | 0  4  6 | 0  0  6  4 | 0  0   0   4 1 0 | *  *   * 32  * *   0   0  3  0 1 |  0  3  0 3 | 1 0 3
.. .. .. ox3oo .. *e3oo&#x  1 4 | 0  4  6 | 0  0  6  4 | 0  0   0   4 0 1 | *  *   *  * 32 *   0   0  0  3 1 |  0  0  3 3 | 0 1 3
.. .. .. .x3.o3.o *3.o      0 8 | 0  0 24 | 0  0  0 32 | 0  0   0   0 8 8 | *  *   *  *  * 1   0   0  0  0 4 |  0  0  0 6 | 0 0 4
---------------------------+-----+---------+------------+------------------+------------------+----------------+------------+------
xo3oo3oo ox .. ..    ..&#x  4 2 | 6  8  1 | 4 12  4  0 | 1  8   6   0 0 0 | 2  4   0  0  0 0 | 24   *  *  * * |  4  0  0 0 | 2 2 0
xo3oo .. ox3oo ..    ..&#x  3 3 | 3  9  3 | 1  9  9  1 | 0  3   9   3 0 0 | 0  3   3  0  0 0 |  * 128  *  * * |  1  1  1 0 | 1 1 1
xo .. .. ox3oo3oo    ..&#x  2 4 | 1  8  6 | 0  4 12  4 | 0  0   6   8 1 0 | 0  0   4  2  0 0 |  *   * 48  * * |  0  2  0 1 | 1 0 2
xo .. .. ox3oo .. *e3oo&#x  2 4 | 1  8  6 | 0  4 12  4 | 0  0   6   8 0 1 | 0  0   4  0  2 0 |  *   *  * 48 * |  0  0  2 1 | 0 1 2
.. .. .. ox3oo3oo *e3oo&#x  1 8 | 0  8 24 | 0  0 24 32 | 0  0   0  32 8 8 | 0  0   0  8  8 1 |  *   *  *  * 4 |  0  0  0 3 | 0 0 3
---------------------------+-----+---------+------------+------------------+------------------+----------------+------------+------
xo3oo3oo ox3oo ..    ..&#x  4 3 | 6 12  3 | 4 18 12  1 | 1 12  18   4 0 0 | 3 12   6  0  0 0 |  3   4  0  0 0 | 32  *  * * | 1 1 0
xo3oo .. ox3oo3oo    ..&#x  3 4 | 3 12  6 | 1 12 18  4 | 0  4  18  12 1 0 | 0  6  12  3  0 0 |  0   4  3  0 0 |  * 32  * * | 1 0 1
xo3oo .. ox3oo .. *e3oo&#x  3 4 | 3 12  6 | 1 12 18  4 | 0  4  18  12 0 1 | 0  6  12  0  3 0 |  0   4  0  3 0 |  *  * 32 * | 0 1 1
xo .. .. ox3oo3oo *e3oo&#x  2 8 | 1 16 24 | 0  8 48 32 | 0  0  24  64 8 8 | 0  0  32 16 16 1 |  0   0  8  8 2 |  *  *  * 6 | 0 0 2
---------------------------+-----+---------+------------+------------------+------------------+----------------+------------+------
xo3oo3oo ox3oo3oo    ..&#x  4 4 | 6 16  6 | 4 24 24  4 | 1 16  36  16 1 0 | 4 24  24  4  0 0 |  6  16  6  0 0 |  4  4  0 0 | 8 * *
xo3oo3oo ox3oo .. *e3oo&#x  4 4 | 6 16  6 | 4 24 24  4 | 1 16  36  16 0 1 | 4 24  24  0  4 0 |  6  16  0  6 0 |  4  0  4 0 | * 8 *
xo3oo .. ox3oo3oo *e3oo&#x  3 8 | 3 24 24 | 1 24 72 32 | 0  8  72  96 8 8 | 0 24  96 24 24 1 |  0  32 24 24 3 |  0  8  8 3 | * * 4

© 2004-2025
top of page