Acronym | penhex |
Name |
(pentachoron, hexadecachoron)-duoprism, vertex figure of nav |
Circumradius | 3/sqrt(10) = 0.948683 |
Volume | sqrt(5)/576 = 0.00388206 |
Face vector | 40, 200, 480, 680, 613, 354, 122, 21 |
Confer |
|
Incidence matrix according to Dynkin symbol
x3o3o3o x3o3o4o . . . . . . . . | 40 | 4 6 | 6 24 12 | 4 36 48 8 | 1 24 72 32 1 | 6 48 48 4 | 12 32 6 | 8 4 ----------------+----+--------+------------+---------------+-----------------+---------------+----------+----- x . . . . . . . | 2 | 80 * | 3 6 0 | 3 18 12 0 | 1 18 36 8 0 | 6 36 24 1 | 12 24 3 | 8 3 . . . . x . . . | 2 | * 120 | 0 4 4 | 0 6 16 4 | 0 4 24 16 1 | 1 16 24 4 | 4 16 6 | 4 4 ----------------+----+--------+------------+---------------+-----------------+---------------+----------+----- x3o . . . . . . | 3 | 3 0 | 80 * * | 2 6 0 0 | 1 12 12 0 0 | 6 24 12 0 | 12 16 1 | 8 2 x . . . x . . . | 4 | 2 2 | * 240 * | 0 3 4 0 | 0 3 12 4 0 | 1 12 12 1 | 4 12 3 | 4 3 . . . . x3o . . | 3 | 0 3 | * * 160 | 0 0 4 2 | 0 0 6 8 1 | 0 4 12 4 | 1 8 6 | 2 4 ----------------+----+--------+------------+---------------+-----------------+---------------+----------+----- x3o3o . . . . . ♦ 4 | 6 0 | 4 0 0 | 40 * * * | 1 6 0 0 0 | 6 12 0 0 | 12 8 0 | 8 1 x3o . . x . . . ♦ 6 | 6 3 | 2 3 0 | * 240 * * | 0 2 4 0 0 | 1 8 4 0 | 4 8 1 | 4 2 x . . . x3o . . ♦ 6 | 3 6 | 0 3 2 | * * 320 * | 0 0 3 2 0 | 0 3 6 1 | 1 6 3 | 2 3 . . . . x3o3o . ♦ 4 | 0 6 | 0 0 4 | * * * 80 | 0 0 0 4 1 | 0 0 6 4 | 0 4 6 | 1 4 ----------------+----+--------+------------+---------------+-----------------+---------------+----------+----- x3o3o3o . . . . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 0 | 8 * * * * ♦ 6 0 0 0 | 12 0 0 | 8 0 x3o3o . x . . . ♦ 8 | 12 4 | 8 6 0 | 2 4 0 0 | * 120 * * * | 1 4 0 0 | 4 4 0 | 4 1 x3o . . x3o . . ♦ 9 | 9 9 | 3 9 3 | 0 3 3 0 | * * 320 * * | 0 2 2 0 | 1 4 1 | 2 2 x . . . x3o3o . ♦ 8 | 4 12 | 0 6 8 | 0 0 4 2 | * * * 160 * | 0 0 3 1 | 0 3 3 | 1 3 . . . . x3o3o4o ♦ 8 | 0 24 | 0 0 32 | 0 0 0 16 | * * * * 5 ♦ 0 0 0 4 | 0 0 6 | 0 4 ----------------+----+--------+------------+---------------+-----------------+---------------+----------+----- x3o3o3o x . . . ♦ 10 | 20 5 | 20 10 0 | 10 10 0 0 | 2 5 0 0 0 | 24 * * * | 4 0 0 | 4 0 x3o3o . x3o . . ♦ 12 | 18 12 | 12 18 4 | 3 12 6 0 | 0 3 4 0 0 | * 160 * * | 1 2 0 | 2 1 x3o . . x3o3o . ♦ 12 | 12 18 | 6 18 12 | 0 6 12 3 | 0 0 4 3 0 | * * 160 * | 0 2 1 | 1 2 x . . . x3o3o4o ♦ 16 | 8 48 | 0 24 64 | 0 0 32 32 | 0 0 0 16 2 | * * * 10 | 0 0 3 | 0 3 ----------------+----+--------+------------+---------------+-----------------+---------------+----------+----- x3o3o3o x3o . . ♦ 15 | 30 15 | 30 30 5 | 15 30 10 0 | 3 15 10 0 0 | 3 5 0 0 | 32 * * | 2 0 x3o3o . x3o3o . ♦ 16 | 24 24 | 16 36 16 | 4 24 24 4 | 0 6 16 6 0 | 0 4 4 0 | * 80 * | 1 1 x3o . . x3o3o4o ♦ 24 | 24 72 | 8 72 96 | 0 24 96 48 | 0 0 32 48 3 | 0 0 16 3 | * * 10 | 0 2 ----------------+----+--------+------------+---------------+-----------------+---------------+----------+----- x3o3o3o x3o3o . ♦ 20 | 40 30 | 40 60 20 | 20 60 40 5 | 4 30 40 10 0 | 6 20 10 0 | 4 5 0 | 16 * x3o3o . x3o3o4o ♦ 32 | 48 96 | 32 144 128 | 8 96 192 64 | 0 24 128 96 4 | 0 32 64 6 | 0 16 4 | * 5
x3o3o3o x3o3o *f3o . . . . . . . . | 40 | 4 6 | 6 24 12 | 4 36 48 4 4 | 1 24 72 16 16 1 | 6 48 24 24 4 | 12 16 16 6 | 4 4 4 -------------------+----+--------+------------+------------------+-------------------+-----------------+-------------+------ x . . . . . . . | 2 | 80 * | 3 6 0 | 3 18 12 0 0 | 1 18 36 4 4 0 | 6 36 12 12 1 | 12 12 12 3 | 4 4 3 . . . . x . . . | 2 | * 120 | 0 4 4 | 0 6 16 2 2 | 0 4 24 8 8 1 | 1 16 12 12 4 | 4 8 8 6 | 2 2 4 -------------------+----+--------+------------+------------------+-------------------+-----------------+-------------+------ x3o . . . . . . | 3 | 3 0 | 80 * * | 2 6 0 0 0 | 1 12 12 0 0 0 | 6 24 6 6 0 | 12 8 8 1 | 4 4 2 x . . . x . . . | 4 | 2 2 | * 240 * | 0 3 4 0 0 | 0 3 12 2 2 0 | 1 12 6 6 1 | 4 6 6 3 | 2 2 3 . . . . x3o . . | 3 | 0 3 | * * 160 | 0 0 4 1 1 | 0 0 6 4 4 1 | 0 4 6 6 4 | 1 4 4 6 | 1 1 4 -------------------+----+--------+------------+------------------+-------------------+-----------------+-------------+------ x3o3o . . . . . ♦ 4 | 6 0 | 4 0 0 | 40 * * * * | 1 6 0 0 0 0 | 6 12 0 0 0 | 12 4 4 0 | 4 4 1 x3o . . x . . . ♦ 6 | 6 3 | 2 3 0 | * 240 * * * | 0 2 4 0 0 0 | 1 8 2 2 0 | 4 4 4 1 | 2 2 2 x . . . x3o . . ♦ 6 | 3 6 | 0 3 2 | * * 320 * * | 0 0 3 1 1 0 | 0 3 3 3 1 | 1 3 3 3 | 1 1 3 . . . . x3o3o . ♦ 4 | 0 6 | 0 0 4 | * * * 40 * | 0 0 0 4 0 1 | 0 0 6 0 4 | 0 4 0 6 | 1 0 4 . . . . x3o . *f3o ♦ 4 | 0 6 | 0 0 4 | * * * * 40 | 0 0 0 0 4 1 | 0 0 0 6 4 | 0 0 4 6 | 0 1 4 -------------------+----+--------+------------+------------------+-------------------+-----------------+-------------+------ x3o3o3o . . . . ♦ 5 | 10 0 | 10 0 0 | 5 0 0 0 0 | 8 * * * * * ♦ 6 0 0 0 0 | 12 0 0 0 | 4 4 0 x3o3o . x . . . ♦ 8 | 12 4 | 8 6 0 | 2 4 0 0 0 | * 120 * * * * | 1 4 0 0 0 | 4 2 2 0 | 2 2 1 x3o . . x3o . . ♦ 9 | 9 9 | 3 9 3 | 0 3 3 0 0 | * * 320 * * * | 0 2 1 1 0 | 1 2 2 1 | 1 1 2 x . . . x3o3o . ♦ 8 | 4 12 | 0 6 8 | 0 0 4 2 0 | * * * 80 * * | 0 0 3 0 1 | 0 3 0 3 | 1 0 3 x . . . x3o . *f3o ♦ 8 | 4 12 | 0 6 8 | 0 0 4 0 2 | * * * * 80 * | 0 0 0 3 1 | 0 0 3 3 | 0 1 3 . . . . x3o3o *f3o ♦ 8 | 0 24 | 0 0 32 | 0 0 0 8 8 | * * * * * 5 ♦ 0 0 0 0 4 | 0 0 0 6 | 0 0 4 -------------------+----+--------+------------+------------------+-------------------+-----------------+-------------+------ x3o3o3o x . . . ♦ 10 | 20 5 | 20 10 0 | 10 10 0 0 0 | 2 5 0 0 0 0 | 24 * * * * | 4 0 0 0 | 2 2 0 x3o3o . x3o . . ♦ 12 | 18 12 | 12 18 4 | 3 12 6 0 0 | 0 3 4 0 0 0 | * 160 * * * | 1 1 1 0 | 1 1 1 x3o . . x3o3o . ♦ 12 | 12 18 | 6 18 12 | 0 6 12 3 0 | 0 0 4 3 0 0 | * * 80 * * | 0 2 0 1 | 1 0 2 x3o . . x3o . *f3o ♦ 12 | 12 18 | 6 18 12 | 0 6 12 0 3 | 0 0 4 0 3 0 | * * * 80 * | 0 0 2 1 | 0 1 2 x . . . x3o3o *f3o ♦ 16 | 8 48 | 0 24 64 | 0 0 32 16 16 | 0 0 0 8 8 2 | * * * * 10 | 0 0 0 3 | 0 0 3 -------------------+----+--------+------------+------------------+-------------------+-----------------+-------------+------ x3o3o3o x3o . . ♦ 15 | 30 15 | 30 30 5 | 15 30 10 0 0 | 3 15 10 0 0 0 | 3 5 0 0 0 | 32 * * * | 1 1 0 x3o3o . x3o3o . ♦ 16 | 24 24 | 16 36 16 | 4 24 24 4 0 | 0 6 16 6 0 0 | 0 4 4 0 0 | * 40 * * | 1 0 1 x3o3o . x3o . *f3o ♦ 16 | 24 24 | 16 36 16 | 4 24 24 0 4 | 0 6 16 0 6 0 | 0 4 0 4 0 | * * 40 * | 0 1 1 x3o . . x3o3o *f3o ♦ 24 | 24 72 | 8 72 96 | 0 24 96 24 24 | 0 0 32 24 24 3 | 0 0 8 8 3 | * * * 10 | 0 0 2 -------------------+----+--------+------------+------------------+-------------------+-----------------+-------------+------ x3o3o3o x3o3o . ♦ 20 | 40 30 | 40 60 20 | 20 60 40 5 0 | 4 30 40 10 0 0 | 6 20 10 0 0 | 4 5 0 0 | 8 * * x3o3o3o x3o . *f3o ♦ 20 | 40 30 | 40 60 20 | 20 60 40 0 5 | 4 30 40 0 10 0 | 6 20 0 10 0 | 4 0 5 0 | * 8 * x3o3o . x3o3o *f3o ♦ 32 | 48 96 | 32 144 128 | 8 96 192 32 32 | 0 24 128 48 48 4 | 0 32 32 32 6 | 0 8 8 4 | * * 5
ox3oo3oo xx3oo3oo4oo&#x → height = sqrt(5/8) = 0.790569 ...
xo ox3oo xx3oo3oo4oo&#x → height = sqrt(5/12) = 0.645497 ...
ox3oo3oo xx3oo3oo *e3oo&#x → height = sqrt(5/8) = 0.790569 ...
xo ox3oo xx3oo3oo *e3oo&#x → height = sqrt(5/12) = 0.645497 ...
xo3oo3ox xx3oo3oo3oo&#x → height = 1/sqrt(2) = 0.707107 ...
© 2004-2025 | top of page |