Acronym ... Name (0,0,0,12,0)-diminished vertex-first-rotunda of ex,dodeca-diminished vertex-first rotunda of hexacosachoron ` ©` Circumradius (1+sqrt(5))/2 = 1.618034 Lace cityin approx. ASCII-art ``` o5x x5o o5o f5o o5x f5o o5o x5x o5f x5o o5f o5o o5x x5o ``` ``` o3o x3o o3f f3o o3x (F=ff) o3o o3f f3x x3f f3o o3o o3x x3f F3o f3f o3F f3x x3o ``` Dihedral angles at {3} between tet and tet:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between gyepip and tet:   arccos[-sqrt(5/8)] = 142.238756° at {3} between gyepip and gyepip:   120° at {3} between tet and id:   arccos[(3-sqrt(5))/sqrt(32)] = 82.238756° at {5} between gyepip and id:   72° Confer segmentochora: ikepy   ike || doe   doe || id   other CRFs: rotunda of ex   id || f-ike || ike   ike || doe || id   uniform relative: ex

Incidence matrix according to Dynkin symbol

```oxoo3ooox5ooxo&#xt   → height(1,2) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = 1/2
height(3,4) = (1+sqrt(5))/4 = 0.809017
(pt || pseudo ike || pseudo doe || id)

o...3o...5o...     | 1  *  *  * ♦ 12  0  0  0  0  0 | 30  0  0  0  0  0  0  0 | 20  0  0  0  0 0
.o..3.o..5.o..     | * 12  *  * ♦  1  5  5  0  0  0 |  5  5 10  5  0  0  0  0 |  5  5  5  1  0 0
..o.3..o.5..o.     | *  * 20  * ♦  0  0  3  3  3  0 |  0  0  3  6  3  3  0  0 |  0  1  3  3  1 0
...o3...o5...o     | *  *  * 30 |  0  0  0  0  2  4 |  0  0  0  0  4  1  2  2 |  0  0  0  2  2 1
-------------------+------------+-------------------+-------------------------+-----------------
oo..3oo..5oo..&#x  | 1  1  0  0 | 12  *  *  *  *  * |  5  0  0  0  0  0  0  0 |  5  0  0  0  0 0
.x.. .... ....     | 0  2  0  0 |  * 30  *  *  *  * |  1  2  2  0  0  0  0  0 |  2  2  1  0  0 0
.oo.3.oo.5.oo.&#x  | 0  1  1  0 |  *  * 60  *  *  * |  0  0  2  2  0  0  0  0 |  0  1  2  1  0 0
.... .... ..x.     | 0  0  2  0 |  *  *  * 30  *  * |  0  0  0  2  0  1  0  0 |  0  0  1  2  0 0
..oo3..oo5..oo&#x  | 0  0  1  1 |  *  *  *  * 60  * |  0  0  0  0  2  1  0  0 |  0  0  0  2  1 0
.... ...x ....     | 0  0  0  2 |  *  *  *  *  * 60 |  0  0  0  0  1  0  1  1 |  0  0  0  1  1 1
-------------------+------------+-------------------+-------------------------+-----------------
ox.. .... ....&#x  | 1  2  0  0 |  2  1  0  0  0  0 | 30  *  *  *  *  *  *  * |  2  0  0  0  0 0
.x..3.o.. ....     | 0  3  0  0 |  0  3  0  0  0  0 |  * 20  *  *  *  *  *  * |  1  1  0  0  0 0
.xo. .... ....&#x  | 0  2  1  0 |  0  1  2  0  0  0 |  *  * 60  *  *  *  *  * |  0  1  1  0  0 0
.... .... .ox.&#x  | 0  1  2  0 |  0  0  2  1  0  0 |  *  *  * 60  *  *  *  * |  0  0  1  1  0 0
.... ..ox ....&#x  | 0  0  1  2 |  0  0  0  0  2  1 |  *  *  *  * 60  *  *  * |  0  0  0  1  1 0
.... .... ..xo&#x  | 0  0  2  1 |  0  0  0  1  2  0 |  *  *  *  *  * 30  *  * |  0  0  0  2  0 0
...o3...x ....     | 0  0  0  3 |  0  0  0  0  0  3 |  *  *  *  *  *  * 20  * |  0  0  0  0  1 1
.... ...x5...o     | 0  0  0  5 |  0  0  0  0  0  5 |  *  *  *  *  *  *  * 12 |  0  0  0  1  0 1
-------------------+------------+-------------------+-------------------------+-----------------
ox..3oo.. ....&#x  ♦ 1  3  0  0 |  3  3  0  0  0  0 |  3  1  0  0  0  0  0  0 | 20  *  *  *  * *
.xo.3.oo. ....&#x  ♦ 0  3  1  0 |  0  3  3  0  0  0 |  0  1  3  0  0  0  0  0 |  * 20  *  *  * *
.xo. .... .ox.&#x  ♦ 0  2  2  0 |  0  1  4  1  0  0 |  0  0  2  2  0  0  0  0 |  *  * 30  *  * *  blue
.... .oox5.oxo&#xt ♦ 0  1  5  5 |  0  0  5  5 10  5 |  0  0  0  5  5  5  0  1 |  *  *  * 12  * *
..oo3..ox ....&#x  ♦ 0  0  1  3 |  0  0  0  0  3  3 |  0  0  0  0  3  0  1  0 |  *  *  *  * 20 *
...o3...x5...o     ♦ 0  0  0 30 |  0  0  0  0  0 60 |  0  0  0  0  0  0 20 12 |  *  *  *  *  * 1
```