Acronym (2,2n)-pap
Name dyad - 2n-gon prismantiprismoid,
s2s2s-2n-x,
edge-alternated square - 4n-gon duoprism
Circumradius ...
Especially s2s2s4x (n=2)   s2s2s6x (n=3)  
Confer
more general:
s-n-s-2-s-2m-x  
general polytopal classes:
isogonal  
External
links
polytopewiki , e.g. polytopewiki (n = 2)  

These isogonal polychora are obtained by edge alternation of the uniform 4,4n-duoprism (with n > 1).


Incidence matrix according to Dynkin symbol

s2s2s-2n-x   (n > 1)

demi( . . .    . ) | 8n |  1  1  1  1  1 |  1 1  3  2  2 |  1 1 1  3
-------------------+----+----------------+---------------+----------
demi( . . .    x ) |  2 | 4n  *  *  *  * |  1 1  0  1  1 |  0 1 1  2  x
      s2s .    .   |  2 |  * 4n  *  *  * |  1 0  2  0  0 |  1 0 0  2  q
      s 2 s    .   |  2 |  *  * 4n  *  * |  0 0  2  2  0 |  1 1 0  2  q
      . s2s    .   |  2 |  *  *  * 4n  * |  0 0  2  0  2 |  1 0 1  2  q
sefa( . . s-2n-x ) |  2 |  *  *  *  * 4n |  0 1  0  1  1 |  0 1 1  1  y = x(4n,3)
-------------------+----+----------------+---------------+----------
      s2s 2    x   |  4 |  2  2  0  0  0 | 2n *  *  *  * |  0 0 0  2  x2q
      . . s-2n-x   | 2n |  n  0  0  0  n |  * 4  *  *  * |  0 1 1  0  xny
sefa( s2s2s    . ) |  3 |  0  1  1  1  0 |  * * 8n  *  * |  1 0 0  1  q3o
sefa( s 2 s-2n-x ) |  4 |  1  0  2  0  1 |  * *  * 4n  * |  0 1 0  1  xy&#q
sefa( . s2s-2n-x ) |  4 |  1  0  0  2  1 |  * *  *  * 4n |  0 0 1  1  xy&#q
-------------------+----+----------------+---------------+----------
      s2s2s    .   |  4 |  0  2  2  2  0 |  0 0  4  0  0 | 2n * *  *  q-tet
      s 2 s-2n-x   | 4n | 2n  0 2n  0 2n |  0 2  0 2n  0 |  * 2 *  *  di-n-gonal trapezoprism (2n-p variant)
      . s2s-2n-x   | 4n | 2n  0  0 2n 2n |  0 2  0  0 2n |  * * 2  *  di-n-gonal trapezoprism (2n-p variant)
sefa( s2s2s-2n-x ) |  6 |  2  2  2  2  1 |  1 0  2  1  1 |  * * * 4n  yx2oq&#q, wedge-like trip variant

starting figure: x x x-2n-x

s4o2s-2n-x   (n > 1)

demi( . . .    . ) | 8n |  1  1  2  1 |  1 1  3  4 |  1 2  3
-------------------+----+-------------+------------+--------
demi( . . .    x ) |  2 | 4n  *  *  * |  1 1  0  2 |  0 2  2  x
      s4o .    .   |  2 |  * 4n  *  * |  1 0  2  0 |  1 0  2  q
      s 2 s    .   |  2 |  *  * 8n  * |  0 0  2  2 |  1 1  2  q
sefa( . . s-2n-x ) |  2 |  *  *  * 4n |  0 1  0  2 |  0 2  1  y = x(4n,3)
-------------------+----+-------------+------------+--------
      s4o 2    x   |  4 |  2  2  0  0 | 2n *  *  * |  0 0  2  x2q
      . . s-2n-x   | 2n |  n  0  0  n |  * 4  *  * |  0 2  0  xny
sefa( s4o2s    . ) |  3 |  0  1  2  0 |  * * 8n  * |  1 0  1  q3o
sefa( s 2 s-2n-x ) |  4 |  1  0  2  1 |  * *  * 8n |  0 1  1  xy&#q
-------------------+----+-------------+------------+--------
      s4o2s    .   |  4 |  0  2  4  0 |  0 0  4  0 | 2n *  *  q-tet
      s 2 s-2n-x   | 4n | 2n  0 2n 2n |  0 2  0 2n |  * 4  *  di-n-gonal trapezoprism (2n-p variant)
sefa( s4o2s-2n-x ) |  6 |  2  2  4  1 |  1 0  2  2 |  * * 4n  yx2oq&#q, wedge-like trip variant

starting figure: x4o x-2n-x

© 2004-2021
top of page