Acronym scadpy
Name (degenerate) scad pyramid
Circumradius ∞   i.e. flat in euclidean space
Face vector 31, 150, 330, 390, 242, 63
Confer
general polytopal classes:
decomposition  

It either can be thought of as a degenerate 6D segmentotope with zero height, or as a 5D euclidean decomposition of the larger base into smaller bits.


Incidence matrix according to Dynkin symbol

ox3oo3oo3oo3ox&#x   → height = 0
(pt || scad)

o.3o.3o.3o.3o.      | 1  *  30   0 | 120   0  0 | 120 90  0   0 | 60 120  0  0  0 | 12 30 20 0
.o3.o3.o3.o3.o      | * 30 |  1   8 |   8  12 12 |  12 12  8  24 |  8  24  2  8  6 |  2  8  6 1
--------------------+------+--------+------------+---------------+-----------------+-----------
oo3oo3oo3oo3oo&#x   | 1  1 | 30   *    8   0  0 |  12 12  0   0 |  8  24  0  0  0 |  2  8  6 0
.x .. .. .. ..    & | 0  2 |  * 120 |   1   3  3 |   3  3  3   9 |  3   9  1  4  3 |  1  4  3 1
--------------------+------+--------+------------+---------------+-----------------+-----------
ox .. .. .. ..&#x & | 1  2 |  2   1 | 120   *  * |   3  3  0   0 |  3   9  0  0  0 |  1  4  3 0
.x3.o .. .. ..    & | 0  3 |  0   3 |   * 120  * |   1  0  2   2 |  2   2  1  2  1 |  1  2  1 1
.x .. .. .. .x      | 0  4 |  0   4 |   *   * 90 |   0  1  0   4 |  0   4  0  2  2 |  0  2  2 1
--------------------+------+--------+------------+---------------+-----------------+-----------
ox3oo .. .. ..&#x &  1  3 |  3   3 |   3   1  0 | 120  *  *   * |  2   2  0  0  0 |  1  2  1 0
ox .. .. .. ox&#x    1  4 |  4   4 |   4   0  1 |   * 90  *   * |  0   4  0  0  0 |  0  2  2 0
.x3.o3.o .. ..    &  0  4 |  0   6 |   0   4  0 |   *  * 60   * |  1   0  1  1  0 |  1  1  0 1
.x3.o .. .. .x    &  0  6 |  0   9 |   0   2  3 |   *  *  * 120 |  0   1  0  1  1 |  0  1  1 1
--------------------+------+--------+------------+---------------+-----------------+-----------
ox3oo3oo .. ..&#x &  1  4 |  4   6 |   6   4  0 |   4  0  1   0 | 60   *  *  *  * |  1  1  0 0
ox3oo .. .. ox&#x &  1  6 |  6   9 |   9   2  3 |   2  3  0   1 |  * 120  *  *  * |  0  1  1 0
.x3.o3.o3.o ..    &  0  5 |  0  10 |   0  10  0 |   0  0  5   0 |  *   * 12  *  * |  1  0  0 1
.x3.o3.o .. .x    &  0  8 |  0  16 |   0   8  6 |   0  0  2   4 |  *   *  * 30  * |  0  1  0 1
.x3.o .. .o3.x       0  9 |  0  18 |   0   6  9 |   0  0  0   6 |  *   *  *  * 20 |  0  0  1 1
--------------------+------+--------+------------+---------------+-----------------+-----------
ox3oo3oo3oo ..&#x &  1  5 |  5  10 |  10  10  0 |  10  0  5   0 |  5   0  1  0  0 | 12  *  * *
ox3oo3oo .. ox&#x &  1  8 |  8  16 |  16   8  6 |   8  6  2   4 |  2   4  0  1  0 |  * 30  * *
ox3oo .. oo3ox&#x    1  9 |  9  18 |  18   6  9 |   6  9  0   6 |  0   6  0  0  1 |  *  * 20 *
.x3.o3.o3.o3.x       0 30 |  0 120 |   0 120 90 |   0  0 60 120 |  0   0 12 30 20 |  *  *  * 1

© 2004-2026
top of page