Acronym siidip Name small-icosicosidodecahedron prism Circumradius sqrt[(19+3 sqrt(5))/8] = 1.792631 Colonel of regiment (is itself locally convex – other uniform polyhedral members: sidditdiddip   & others) Dihedral angles at {4} between hip and stip:   arccos(-sqrt[(5+2 sqrt(5))/15]) = 142.622632° at {4} between hip and trip:   arccos(-sqrt(5)/3) = 138.189685° at {6} between hip and siid:   90° at {5/2} between siid and stip:   90° at {3} between siid and trip:   90° Confer scaliform relative: siida Externallinks

As abstract polytope siidip is isomorphic to giidip, thereby replacing pentagrams by pentagons, resp. replacing siid by giid and stip by pip.

Incidence matrix according to Dynkin symbol

```x x5/2o3x3*b

. .   . .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
-------------+-----+------------+----------------+-----------
x .   . .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   . .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   . x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
-------------+-----+------------+----------------+-----------
x x   . .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   . x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/2o .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   . x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. .   o3x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
-------------+-----+------------+----------------+-----------
x x5/2o .    ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   . x3*b ♦  12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x .   o3x    ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/2o3x3*b ♦  60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2
```

```x x5/3o3/2x3*b

. .   .   .    | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
---------------+-----+------------+----------------+-----------
x .   .   .    |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   .    |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x    |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
---------------+-----+------------+----------------+-----------
x x   .   .    |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x    |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x5/3o   .    |   5 |  0   5   0 |  *  * 24  *  * |  1  0  0 1
. x   .   x3*b |   6 |  0   3   3 |  *  *  * 40  * |  0  1  0 1
. .   o3/2x    |   3 |  0   0   3 |  *  *  *  * 40 |  0  0  1 1
---------------+-----+------------+----------------+-----------
x x5/3o   .    ♦  10 |  5  10   0 |  5  0  2  0  0 | 12  *  * *
x x   .   x3*b ♦  12 |  6   6   6 |  3  3  0  2  0 |  * 20  * *
x .   o3/2x    ♦   6 |  3   0   6 |  0  3  0  0  2 |  *  * 20 *
. x5/3o3/2x3*b ♦  60 |  0  60  60 |  0  0 12 20 20 |  *  *  * 2
```

 © 2004-2021 top of page