Acronym sirco || groh+8{6/2}
Name (degenerate) sirco atop groh+8{6/2}
Circumradius ∞   i.e. flat in euclidean space
Dihedral angles
Face vector 72, 168, 124, 28
Confer
non-Grünbaumian relatives:
sirco || groh  
general polytopal classes:
segmentochora   decomposition  

This happens to be a degenerate 4D segmentotope with zero height. However, because of the kernal being non-convex, it not really can be thought of as a 3D euclidean decomposition of the larger base into smaller bits.

As abstracct polytope sirco || groh+8{6/2} is isomorphic to sirco || girco, thereby replacing the Grünbaumian double covered triangles (aka doubly wound hexagons) by convex hexagons and octagrams by octagons, resp. ratricu by tricu, rasquacu by squacu, and groh+8{6/2} by girco.


Incidence matrix according to Dynkin symbol

xx3/2ox4/3xx&#x   → height = 0
(sirco || groh+8{6/2})

o.3/2o.4/3o.    | 24  * |  2  2  2  0  0  0 | 1  2 1  2  1  2 0  0 0 | 1 1  2 1 0
.o3/2.o4/3.o    |  * 48 |  0  0  1  1  1  1 | 0  0 0  1  1  1 1  1 1 | 0 1  1 1 1
----------------+-------+-------------------+------------------------+-----------
x.   ..   ..    |  2  0 | 24  *  *  *  *  * | 1  1 0  1  0  0 0  0 0 | 1 1  1 0 0
..   ..   x.    |  2  0 |  * 24  *  *  *  * | 0  1 1  0  0  1 0  0 0 | 1 0  1 1 0
oo3/2oo4/3oo&#x |  1  1 |  *  * 48  *  *  * | 0  0 0  1  1  1 0  0 0 | 0 1  1 1 0
.x   ..   ..    |  0  2 |  *  *  * 24  *  * | 0  0 0  1  0  0 1  1 0 | 0 1  1 0 1 (*)
..   .x   ..    |  0  2 |  *  *  *  * 24  * | 0  0 0  0  1  0 1  0 1 | 0 1  0 1 1 (*)
..   ..   .x    |  0  2 |  *  *  *  *  * 24 | 0  0 0  0  0  1 0  1 1 | 0 0  1 1 1
----------------+-------+-------------------+------------------------+-----------
x.3/2o.   ..    |  3  0 |  3  0  0  0  0  0 | 8  * *  *  *  * *  * * | 1 1  0 0 0
x.   ..   x.    |  4  0 |  2  2  0  0  0  0 | * 12 *  *  *  * *  * * | 1 0  1 0 0
..   o.4/3x.    |  4  0 |  0  4  0  0  0  0 | *  * 6  *  *  * *  * * | 1 0  0 1 0
xx   ..   ..&#x |  2  2 |  1  0  2  1  0  0 | *  * * 24  *  * *  * * | 0 1  1 0 0
..   ox   ..&#x |  1  2 |  0  0  2  0  1  0 | *  * *  * 24  * *  * * | 0 1  0 1 0
..   ..   xx&#x |  2  2 |  0  1  2  0  0  1 | *  * *  *  * 24 *  * * | 0 0  1 1 0
.x3/2.x   ..    |  0  6 |  0  0  0  3  3  0 | *  * *  *  *  * 8  * * | 0 1  0 0 1
.x   ..   .x    |  0  4 |  0  0  0  2  0  2 | *  * *  *  *  * * 12 * | 0 0  1 0 1
..   .x4/3.x    |  0  8 |  0  0  0  0  4  4 | *  * *  *  *  * *  * 6 | 0 0  0 1 1
----------------+-------+-------------------+------------------------+-----------
x.3/2o.4/3x.     24  0 | 24 24  0  0  0  0 | 8 12 6  0  0  0 0  0 0 | 1 *  * * *
xx3/2ox   ..&#x   3  6 |  3  0  6  3  3  0 | 1  0 0  3  3  0 1  0 0 | * 8  * * *
xx   ..   xx&#x   4  4 |  2  2  4  2  0  2 | 0  1 0  2  0  2 0  1 0 | * * 12 * *
..   ox4/3xx&#x   4  8 |  0  4  8  0  4  4 | 0  0 1  0  4  4 0  0 1 | * *  * 6 *
.x3/2.x4/3.x      0 48 |  0  0  0 24 24 24 | 0  0 0  0  0  0 8 12 6 | * *  * * 1

(*) coinciding edges

© 2004-2026
top of page