| Acronym | sirco || groh+8{6/2} |
| Name | (degenerate) sirco atop groh+8{6/2} |
| Circumradius | ∞ i.e. flat in euclidean space |
| Dihedral angles |
|
| Face vector | 72, 168, 124, 28 |
| Confer |
|
This happens to be a degenerate 4D segmentotope with zero height. However, because of the kernal being non-convex, it not really can be thought of as a 3D euclidean decomposition of the larger base into smaller bits.
As abstracct polytope sirco || groh+8{6/2} is isomorphic to sirco || girco, thereby replacing the Grünbaumian double covered triangles (aka doubly wound hexagons) by convex hexagons and octagrams by octagons, resp. ratricu by tricu, rasquacu by squacu, and groh+8{6/2} by girco.
Incidence matrix according to Dynkin symbol
xx3/2ox4/3xx&#x → height = 0
(sirco || groh+8{6/2})
o.3/2o.4/3o. | 24 * | 2 2 2 0 0 0 | 1 2 1 2 1 2 0 0 0 | 1 1 2 1 0
.o3/2.o4/3.o | * 48 | 0 0 1 1 1 1 | 0 0 0 1 1 1 1 1 1 | 0 1 1 1 1
----------------+-------+-------------------+------------------------+-----------
x. .. .. | 2 0 | 24 * * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
.. .. x. | 2 0 | * 24 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0
oo3/2oo4/3oo&#x | 1 1 | * * 48 * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.x .. .. | 0 2 | * * * 24 * * | 0 0 0 1 0 0 1 1 0 | 0 1 1 0 1 (*)
.. .x .. | 0 2 | * * * * 24 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1 (*)
.. .. .x | 0 2 | * * * * * 24 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1
----------------+-------+-------------------+------------------------+-----------
x.3/2o. .. | 3 0 | 3 0 0 0 0 0 | 8 * * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 2 0 0 0 0 | * 12 * * * * * * * | 1 0 1 0 0
.. o.4/3x. | 4 0 | 0 4 0 0 0 0 | * * 6 * * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 0 | * * * 24 * * * * * | 0 1 1 0 0
.. ox ..&#x | 1 2 | 0 0 2 0 1 0 | * * * * 24 * * * * | 0 1 0 1 0
.. .. xx&#x | 2 2 | 0 1 2 0 0 1 | * * * * * 24 * * * | 0 0 1 1 0
.x3/2.x .. | 0 6 | 0 0 0 3 3 0 | * * * * * * 8 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 2 0 2 | * * * * * * * 12 * | 0 0 1 0 1
.. .x4/3.x | 0 8 | 0 0 0 0 4 4 | * * * * * * * * 6 | 0 0 0 1 1
----------------+-------+-------------------+------------------------+-----------
x.3/2o.4/3x. ♦ 24 0 | 24 24 0 0 0 0 | 8 12 6 0 0 0 0 0 0 | 1 * * * *
xx3/2ox ..&#x ♦ 3 6 | 3 0 6 3 3 0 | 1 0 0 3 3 0 1 0 0 | * 8 * * *
xx .. xx&#x ♦ 4 4 | 2 2 4 2 0 2 | 0 1 0 2 0 2 0 1 0 | * * 12 * *
.. ox4/3xx&#x ♦ 4 8 | 0 4 8 0 4 4 | 0 0 1 0 4 4 0 0 1 | * * * 6 *
.x3/2.x4/3.x ♦ 0 48 | 0 0 0 24 24 24 | 0 0 0 0 0 0 8 12 6 | * * * * 1
(*) coinciding edges
© 2004-2026 | top of page |