Acronym ..., srico || cont Name (degenerate) srico atop cont Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```xo3ox4xx3oo&#x   → height = 0
(srico || cont)

o.3o.4o.3o.    | 288   * |   2   4   2   0   0 |  1   4   2   2   2   1   4  0   0  0 |  2  2  1  1   4   2   2  0  0 | 1  2  2  1 0
.o3.o4.o3.o    |   * 288 |   0   0   2   2   2 |  0   0   0   0   1   2   4  1   4  1 |  0  0  0  1   2   4   2  2  2 | 0  2  1  2 1
---------------+---------+---------------------+--------------------------------------+-------------------------------+-------------
x. .. .. ..    |   2   0 | 288   *   *   *   * |  1   2   0   0   1   0   0  0   0  0 |  2  1  0  1   2   0   0  0  0 | 1  2  1  0 0
.. .. x. ..    |   2   0 |   * 576   *   *   * |  0   1   1   1   0   0   1  0   0  0 |  1  1  1  0   1   1   1  0  0 | 1  1  1  1 0
oo3oo4oo3oo&#x |   1   1 |   *   * 576   *   * |  0   0   0   0   1   1   2  0   0  0 |  0  0  0  1   2   2   1  0  0 | 0  2  1  1 0
.. .x .. ..    |   0   2 |   *   *   * 288   * |  0   0   0   0   0   1   0  1   2  0 |  0  0  0  1   0   2   0  2  1 | 0  2  0  1 1
.. .. .x ..    |   0   2 |   *   *   *   * 288 |  0   0   0   0   0   0   2  0   2  1 |  0  0  0  0   1   2   2  1  2 | 0  1  1  2 1
---------------+---------+---------------------+--------------------------------------+-------------------------------+-------------
x.3o. .. ..    |   3   0 |   3   0   0   0   0 | 96   *   *   *   *   *   *  *   *  * |  2  0  0  1   0   0   0  0  0 | 1  2  0  0 0
x. .. x. ..    |   4   0 |   2   2   0   0   0 |  * 288   *   *   *   *   *  *   *  * |  1  1  0  0   1   0   0  0  0 | 1  1  1  0 0
.. o.4x. ..    |   4   0 |   0   4   0   0   0 |  *   * 144   *   *   *   *  *   *  * |  1  0  1  0   0   1   0  0  0 | 1  1  0  1 0
.. .. x.3o.    |   3   0 |   0   3   0   0   0 |  *   *   * 192   *   *   *  *   *  * |  0  1  1  0   0   0   1  0  0 | 1  0  1  1 0
xo .. .. ..&#x |   2   1 |   1   0   2   0   0 |  *   *   *   * 288   *   *  *   *  * |  0  0  0  1   2   0   0  0  0 | 0  2  1  0 0
.. ox .. ..&#x |   1   2 |   0   0   2   1   0 |  *   *   *   *   * 288   *  *   *  * |  0  0  0  1   0   2   0  0  0 | 0  2  0  1 0
.. .. xx ..&#x |   2   2 |   0   1   2   0   1 |  *   *   *   *   *   * 576  *   *  * |  0  0  0  0   1   1   1  0  0 | 0  1  1  1 0
.o3.x .. ..    |   0   3 |   0   0   0   3   0 |  *   *   *   *   *   *   * 96   *  * |  0  0  0  1   0   0   0  2  0 | 0  2  0  0 1
.. .x4.x ..    |   0   8 |   0   0   0   4   4 |  *   *   *   *   *   *   *  * 144  * |  0  0  0  0   0   1   0  1  1 | 0  1  0  1 1
.. .. .x3.o    |   0   3 |   0   0   0   0   3 |  *   *   *   *   *   *   *  *   * 96 |  0  0  0  0   0   0   2  0  2 | 0  0  1  2 1
---------------+---------+---------------------+--------------------------------------+-------------------------------+-------------
x.3o.4x. ..    ♦  24   0 |  24  24   0   0   0 |  8  12   6   0   0   0   0  0   0  0 | 24  *  *  *   *   *   *  *  * | 1  1  0  0 0
x. .. x.3o.    ♦   6   0 |   3   6   0   0   0 |  0   3   0   2   0   0   0  0   0  0 |  * 96  *  *   *   *   *  *  * | 1  0  1  0 0
.. o.3x.4o.    ♦  12   0 |   0  24   0   0   0 |  0   0   6   8   0   0   0  0   0  0 |  *  * 24  *   *   *   *  *  * | 1  0  0  1 0
xo3ox .. ..&#x ♦   3   3 |   3   0   6   3   0 |  1   0   0   0   3   3   0  1   0  0 |  *  *  * 96   *   *   *  *  * | 0  2  0  0 0
xo .. xx ..&#x ♦   4   2 |   2   2   4   0   1 |  0   1   0   0   2   0   2  0   0  0 |  *  *  *  * 288   *   *  *  * | 0  1  1  0 0
.. ox4xx ..&#x ♦   4   8 |   0   4   8   4   4 |  0   0   1   0   0   4   4  0   1  0 |  *  *  *  *   * 144   *  *  * | 0  1  0  1 0
.. .. xx3oo&#x ♦   3   3 |   0   3   3   0   3 |  0   0   0   1   0   0   3  0   0  1 |  *  *  *  *   *   * 192  *  * | 0  0  1  1 0
.o3.x4.x ..    ♦   0  24 |   0   0   0  24  12 |  0   0   0   0   0   0   0  8   6  0 |  *  *  *  *   *   *   * 24  * | 0  1  0  0 1
.. .x4.x3.o    ♦   0  24 |   0   0   0  12  24 |  0   0   0   0   0   0   0  0   6  8 |  *  *  *  *   *   *   *  * 24 | 0  0  0  1 1
---------------+---------+---------------------+--------------------------------------+-------------------------------+-------------
x.3o.4x.3o.    ♦ 288   0 | 288 576   0   0   0 | 96 288 144 192   0   0   0  0   0  0 | 24 96 24  0   0   0   0  0  0 | 1  *  *  * *
xo3ox4xx ..&#x ♦  24  24 |  24  24  48  24  12 |  8  12   6   0  24  24  24  8   6  0 |  1  0  0  8  12   6   0  1  0 | * 24  *  * *
xo .. xx3oo&#x ♦   6   3 |   3   6   6   0   3 |  0   3   0   2   3   0   6  0   0  1 |  0  1  0  0   3   0   2  0  0 | *  * 96  * *
.. ox4xx3oo&#x ♦  12  24 |   0  24  24  12  24 |  0   0   6   8   0  12  24  0   6  8 |  0  0  1  0   0   6   8  0  1 | *  *  * 24 *
.o3.x4.x3.o    ♦   0 288 |   0   0   0 288 288 |  0   0   0   0   0   0   0 96 144 96 |  0  0  0  0   0   0   0 24 24 | *  *  *  * 1
```