Acronym sridati, srid || ti, K-4.126 Name small-rhombicosidodecahedron atop truncated-icosahedron Segmentochoron display Circumradius sqrt[(106+41 sqrt(5))/32] = 2.485450 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles at {4} between tricu and trip:   arccos[-sqrt(5/6)] = 155.905157° at {3} between pap and trip:   150° at {3} between pap and tricu:   arccos[-sqrt(5/8)] = 142.238756° at {4} between srid and trip:   arccos[-(sqrt(5)-1)/sqrt(12)] = 110.905157° at {5} between pap and srid:   108° at {3} between srid and tricu:   arccos[-(3-sqrt(5))/sqrt(32)] = 97.761244° at {6} between ti and tricu:   arccos[(3-sqrt(5))/sqrt(32)] = 82.238756° at {5} between pap and ti:   72° Confer related CRFs: twau sridati   general polytopal classes: segmentochora Externallinks

Incidence matrix according to Dynkin symbol

```xx3xo5ox&#x   → height = (1+sqrt(5))/4 = 0.809017
(ti || srid)

o.3o.5o.    | 60  * |  1  2   2  0  0 |  2  1  2  2  1  0  0  0 | 1  2  1  1 0
.o3.o5.o    |  * 60 |  0  0   2  2  2 |  0  0  2  1  2  1  2  1 | 0  1  2  1 1
------------+-------+-----------------+-------------------------+-------------
x. .. ..    |  2  0 | 30  *   *  *  * |  2  0  2  0  0  0  0  0 | 1  2  1  0 0
.. x. ..    |  2  0 |  * 60   *  *  * |  1  1  0  1  0  0  0  0 | 1  1  0  1 0
oo3oo5oo&#x |  1  1 |  *  * 120  *  * |  0  0  1  1  1  0  0  0 | 0  1  1  1 0
.x .. ..    |  0  2 |  *  *   * 60  * |  0  0  1  0  0  1  1  0 | 0  1  1  0 1
.. .. .x    |  0  2 |  *  *   *  * 60 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
------------+-------+-----------------+-------------------------+-------------
x.3x. ..    |  6  0 |  3  3   0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
.. x.5o.    |  5  0 |  0  5   0  0  0 |  * 12  *  *  *  *  *  * | 1  0  0  1 0
xx .. ..&#x |  2  2 |  1  0   2  1  0 |  *  * 60  *  *  *  *  * | 0  1  1  0 0
.. xo ..&#x |  2  1 |  0  1   2  0  0 |  *  *  * 60  *  *  *  * | 0  1  0  1 0
.. .. ox&#x |  1  2 |  0  0   2  0  1 |  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.o ..    |  0  3 |  0  0   0  3  0 |  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x .. .x    |  0  4 |  0  0   0  2  2 |  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .o5.x    |  0  5 |  0  0   0  0  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------+-------+-----------------+-------------------------+-------------
x.3x.5o.    ♦ 60  0 | 30 60   0  0  0 | 20 12  0  0  0  0  0  0 | 1  *  *  * *
xx3xo ..&#x ♦  6  3 |  3  3   6  3  0 |  1  0  3  3  0  1  0  0 | * 20  *  * *
xx .. ox&#x ♦  2  4 |  1  0   4  2  2 |  0  0  2  0  2  0  1  0 | *  * 30  * *
.. xo5ox&#x ♦  5  5 |  0  5  10  0  5 |  0  1  0  5  5  0  0  1 | *  *  * 12 *
.x3.o5.x    ♦  0 60 |  0  0   0 60 60 |  0  0  0  0  0 20 30 12 | *  *  *  * 1
```