Acronym sriddip, K-4.111 Name small-rhombicosidodecahedron prism Segmentochoron display Cross sections ` ©` Circumradius sqrt[3+sqrt(5)] = 2.288246 General of army (is itself convex) Colonel of regiment (is itself locally convex – other uniform polyhedral members: saddiddip   & others) Dihedral angles at {4} between cube and trip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843° at {4} between cube and pip:   arccos(-sqrt[(5+sqrt(5))/10]) = 148.282526° at {4} between cube and srid:   90° at {5} between pip and srid:   90° at {3} between srid and trip:   90° Confer related segmentochora: pecupe   general polytopal classes: segmentochora Externallinks

As abstract polytope sriddip is isomorphic to qriddip, thereby replacing prograde pentagons by retrograde pentagrams, resp. replacing srid by qrid and pip by stip.

Incidence matrix according to Dynkin symbol

```x x3o5x

. . . . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
--------+-----+------------+----------------+-----------
x . . . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x . . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . . x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
--------+-----+------------+----------------+-----------
x x . . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . . x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3o . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x . x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. . o5x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
--------+-----+------------+----------------+-----------
x x3o . ♦   6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x . x ♦   8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x . o5x ♦  10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3o5x ♦  60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2

snubbed forms: β2x3o5β
```

```x x3/2o5/4x

. .   .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
------------+-----+------------+----------------+-----------
x .   .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
------------+-----+------------+----------------+-----------
x x   .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3/2o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x   .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. .   o5/4x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
------------+-----+------------+----------------+-----------
x x3/2o   . ♦   6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x   .   x ♦   8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x .   o5/4x ♦  10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3/2o5/4x ♦  60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2
```

```xx3oo5xx&#x   → height = 1
(srid || srid)

o.3o.5o.    | 60  * |  2  2  1  0  0 |  1  2  1  2  2  0  0  0 | 1  1  2  1 0
.o3.o5.o    |  * 60 |  0  0  1  2  2 |  0  0  0  2  2  1  2  1 | 0  1  2  1 1
------------+-------+----------------+-------------------------+-------------
x. .. ..    |  2  0 | 60  *  *  *  * |  1  1  0  1  0  0  0  0 | 1  1  1  0 0
.. .. x.    |  2  0 |  * 60  *  *  * |  0  1  1  0  1  0  0  0 | 1  0  1  1 0
oo3oo5oo&#x |  1  1 |  *  * 60  *  * |  0  0  0  2  2  0  0  0 | 0  1  2  1 0
.x .. ..    |  0  2 |  *  *  * 60  * |  0  0  0  1  0  1  1  0 | 0  1  1  0 1
.. .. .x    |  0  2 |  *  *  *  * 60 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
------------+-------+----------------+-------------------------+-------------
x.3o. ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
x. .. x.    |  4  0 |  2  2  0  0  0 |  * 30  *  *  *  *  *  * | 1  0  1  0 0
.. o.5x.    |  5  0 |  0  5  0  0  0 |  *  * 12  *  *  *  *  * | 1  0  0  1 0
xx .. ..&#x |  2  2 |  1  0  2  1  0 |  *  *  * 60  *  *  *  * | 0  1  1  0 0
.. .. xx&#x |  2  2 |  0  1  2  0  1 |  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.o ..    |  0  3 |  0  0  0  3  0 |  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x .. .x    |  0  4 |  0  0  0  2  2 |  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .o5.x    |  0  5 |  0  0  0  0  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------+-------+----------------+-------------------------+-------------
x.3o.5x.    ♦ 60  0 | 60 60  0  0  0 | 20 30 12  0  0  0  0  0 | 1  *  *  * *
xx3oo ..&#x ♦  3  3 |  3  0  3  3  0 |  1  0  0  3  0  1  0  0 | * 20  *  * *
xx .. xx&#x ♦  4  4 |  2  2  4  2  2 |  0  1  0  2  2  0  1  0 | *  * 30  * *
.. oo5xx&#x ♦  5  5 |  0  5  5  0  5 |  0  0  1  0  5  0  0  1 | *  *  * 12 *
.x3.o5.x    ♦  0 24 |  0  0  0 24 24 |  0  0  0  0  0 20 30 12 | *  *  *  * 1

```