Acronym sripalgrip, srip || inv grip Name (degenerate) srip atop inverted grip Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

Incidence matrix according to Dynkin symbol

```xo3ox3xx3ox&#x   → height = 0
(srip || inv grip)

o.3o.3o.3o.    | 30  * |  2  4   4  0  0  0 |  1  4  2  2  4  2  4  2  0  0  0  0 | 2  2 1  2  4  2  2  1  2 0  0 0 | 1 2  1  2 1 0
.o3.o3.o3.o    |  * 60 |  0  0   2  2  1  1 |  0  0  0  0  1  2  2  2  1  2  2  1 | 0  0 0  1  1  1  2  2  2 1  1 2 | 0 1  1  1 2 1
---------------+-------+--------------------+-------------------------------------+---------------------------------+--------------
x. .. .. ..    |  2  0 | 30  *   *  *  *  * |  1  2  0  0  2  0  0  0  0  0  0  0 | 2  1 0  2  2  1  0  0  0 0  0 0 | 1 2  1  1 0 0
.. .. x. ..    |  2  0 |  * 60   *  *  *  * |  0  1  1  1  0  0  1  0  0  0  0  0 | 1  1 1  0  1  0  1  0  1 0  0 0 | 1 1  0  1 1 0
oo3oo3oo3oo&#x |  1  1 |  *  * 120  *  *  * |  0  0  0  0  1  1  1  1  0  0  0  0 | 0  0 0  1  1  1  1  1  1 0  0 0 | 0 1  1  1 1 0
.. .x .. ..    |  0  2 |  *  *   * 60  *  * |  0  0  0  0  0  1  0  0  1  1  1  0 | 0  0 0  1  0  0  1  1  0 1  1 1 | 0 1  1  0 1 1
.. .. .x ..    |  0  2 |  *  *   *  * 30  * |  0  0  0  0  0  0  2  0  0  2  0  1 | 0  0 0  0  1  0  2  0  2 1  0 2 | 0 1  0  1 2 1
.. .. .. .x    |  0  2 |  *  *   *  *  * 30 |  0  0  0  0  0  0  0  2  0  0  2  1 | 0  0 0  0  0  1  0  2  2 0  1 2 | 0 0  1  1 2 1
---------------+-------+--------------------+-------------------------------------+---------------------------------+--------------
x.3o. .. ..    |  3  0 |  3  0   0  0  0  0 | 10  *  *  *  *  *  *  *  *  *  *  * | 2  0 0  2  0  0  0  0  0 0  0 0 | 1 2  1  0 0 0
x. .. x. ..    |  4  0 |  2  2   0  0  0  0 |  * 30  *  *  *  *  *  *  *  *  *  * | 1  1 0  0  1  0  0  0  0 0  0 0 | 1 1  0  1 0 0
.. o.3x. ..    |  3  0 |  0  3   0  0  0  0 |  *  * 20  *  *  *  *  *  *  *  *  * | 1  0 1  0  0  0  1  0  0 0  0 0 | 1 1  0  0 1 0
.. .. x.3o.    |  3  0 |  0  3   0  0  0  0 |  *  *  * 20  *  *  *  *  *  *  *  * | 0  1 1  0  0  0  0  0  1 0  0 0 | 1 0  0  1 1 0
xo .. .. ..&#x |  2  1 |  1  0   2  0  0  0 |  *  *  *  * 60  *  *  *  *  *  *  * | 0  0 0  1  1  1  0  0  0 0  0 0 | 0 1  1  1 0 0
.. ox .. ..&#x |  1  2 |  0  0   2  1  0  0 |  *  *  *  *  * 60  *  *  *  *  *  * | 0  0 0  1  0  0  1  1  0 0  0 0 | 0 1  1  0 1 0
.. .. xx ..&#x |  2  2 |  0  1   2  0  1  0 |  *  *  *  *  *  * 60  *  *  *  *  * | 0  0 0  0  1  0  1  0  1 0  0 0 | 0 1  0  1 1 0
.. .. .. ox&#x |  1  2 |  0  0   2  0  0  1 |  *  *  *  *  *  *  * 60  *  *  *  * | 0  0 0  0  0  1  0  1  1 0  0 0 | 0 0  1  1 1 0
.o3.x .. ..    |  0  3 |  0  0   0  3  0  0 |  *  *  *  *  *  *  *  * 20  *  *  * | 0  0 0  1  0  0  0  0  0 1  1 0 | 0 1  1  0 0 1
.. .x3.x ..    |  0  6 |  0  0   0  3  3  0 |  *  *  *  *  *  *  *  *  * 20  *  * | 0  0 0  0  0  0  1  0  0 1  0 1 | 0 1  0  0 1 1
.. .x .. .x    |  0  4 |  0  0   0  2  0  2 |  *  *  *  *  *  *  *  *  *  * 30  * | 0  0 0  0  0  0  0  1  0 0  1 1 | 0 0  1  0 1 1
.. .. .x3.x    |  0  6 |  0  0   0  0  3  3 |  *  *  *  *  *  *  *  *  *  *  * 10 | 0  0 0  0  0  0  0  0  2 0  0 2 | 0 0  0  1 2 1
---------------+-------+--------------------+-------------------------------------+---------------------------------+--------------
x.3o.3x. ..    ♦ 12  0 | 12 12   0  0  0  0 |  4  6  4  0  0  0  0  0  0  0  0  0 | 5  * *  *  *  *  *  *  * *  * * | 1 1  0  0 0 0
x. .. x.3o.    ♦  6  0 |  3  6   0  0  0  0 |  0  3  0  2  0  0  0  0  0  0  0  0 | * 10 *  *  *  *  *  *  * *  * * | 1 0  0  1 0 0
.. o.3x.3o.    ♦  6  0 |  0 12   0  0  0  0 |  0  0  4  4  0  0  0  0  0  0  0  0 | *  * 5  *  *  *  *  *  * *  * * | 1 0  0  0 1 0
xo3ox .. ..&#x ♦  3  3 |  3  0   6  3  0  0 |  1  0  0  0  3  3  0  0  1  0  0  0 | *  * * 20  *  *  *  *  * *  * * | 0 1  1  0 0 0
xo .. xx ..&#x ♦  4  2 |  2  2   4  0  1  0 |  0  1  0  0  2  0  2  0  0  0  0  0 | *  * *  * 30  *  *  *  * *  * * | 0 1  0  1 0 0
xo .. .. ox&#x ♦  2  2 |  1  0   4  0  0  1 |  0  0  0  0  2  0  0  2  0  0  0  0 | *  * *  *  * 30  *  *  * *  * * | 0 0  1  1 0 0
.. ox3xx ..&#x ♦  3  6 |  0  3   6  3  3  0 |  0  0  1  0  0  3  3  0  0  1  0  0 | *  * *  *  *  * 20  *  * *  * * | 0 1  0  0 1 0
.. ox .. ox&#x ♦  1  4 |  0  0   4  2  0  2 |  0  0  0  0  0  2  0  2  0  0  1  0 | *  * *  *  *  *  * 30  * *  * * | 0 0  1  0 1 0
.. .. xx3ox&#x ♦  3  6 |  0  3   6  0  3  3 |  0  0  0  1  0  0  3  3  0  0  0  1 | *  * *  *  *  *  *  * 20 *  * * | 0 0  0  1 1 0
.o3.x3.x ..    ♦  0 12 |  0  0   0 12  6  0 |  0  0  0  0  0  0  0  0  4  4  0  0 | *  * *  *  *  *  *  *  * 5  * * | 0 1  0  0 0 1
.o3.x .. .x    ♦  0  6 |  0  0   0  6  0  3 |  0  0  0  0  0  0  0  0  2  0  3  0 | *  * *  *  *  *  *  *  * * 10 * | 0 0  1  0 0 1
.. .x3.x3.x    ♦  0 24 |  0  0   0 12 12 12 |  0  0  0  0  0  0  0  0  0  4  6  4 | *  * *  *  *  *  *  *  * *  * 5 | 0 0  0  0 1 1
---------------+-------+--------------------+-------------------------------------+---------------------------------+--------------
x.3o.3x.3o.    ♦ 30  0 | 30 60   0  0  0  0 | 10 30 20 20  0  0  0  0  0  0  0  0 | 5 10 5  0  0  0  0  0  0 0  0 0 | 1 *  *  * * *
xo3ox3xx ..&#x ♦ 12 12 | 12 12  24 12  6  0 |  4  6  4  0 12 12 12  0  4  4  0  0 | 1  0 0  4  6  0  4  0  0 1  0 0 | * 5  *  * * *
xo3ox .. ox&#x ♦  3  6 |  3  0  12  6  0  3 |  1  0  0  0  6  6  0  6  2  0  3  0 | 0  0 0  2  0  3  0  3  0 0  1 0 | * * 10  * * *
xo .. xx3ox&#x ♦  6  6 |  3  6  12  0  3  3 |  0  3  0  2  6  0  6  6  0  0  0  1 | 0  1 0  0  3  3  0  0  2 0  0 0 | * *  * 10 * *
.. ox3xx3ox&#x ♦  6 24 |  0 12  24 12 12 12 |  0  0  4  4  0 12 12 12  0  4  6  4 | 0  0 1  0  0  0  4  6  4 0  0 1 | * *  *  * 5 *
.o3.x3.x3.x    ♦  0 60 |  0  0   0 60 30 30 |  0  0  0  0  0  0  0  0 20 20 30 10 | 0  0 0  0  0  0  0  0  0 5 10 5 | * *  *  * * 1
```