Acronym taccatot, tac || tot
Name (degenerate) tac atop tot
Circumradius ∞   i.e. flat in euclidean space
Face vector 90, 400, 760, 720, 314, 44
Confer
general polytopal classes:
decomposition  

It either can be thought of as a degenerate 6D segmentotope with zero height, or as a 5D euclidean decomposition of the larger base into smaller bits.


Incidence matrix according to Dynkin symbol

xx3ox3oo3oo4oo&#x   → height = 0
(tac || tot)

o.3o.3o.3o.4o.    | 10  * |  8  8  0   0 | 24  8  24  0   0 | 32 24  32  0   0 | 16 32  16  0  0 | 1 16  1 0
.o3.o3.o3.o4.o    |  * 80 |  0  1  1   6 |  0  1   6  6  12 |  0  6  12 12   8 |  0 12   8  8  1 | 0  8  1 1
------------------+-------+--------------+------------------+------------------+-----------------+----------
x. .. .. .. ..    |  2  0 | 40  *  *   * |  6  1   0  0   0 | 12  6   0  0   0 |  8 12   0  0  0 | 1  8  0 0
oo3oo3oo3oo4oo&#x |  1  1 |  * 80  *   * |  0  1   6  0   0 |  0  6  12  0   0 |  0 12   8  0  0 | 0  8  1 0
.x .. .. .. ..    |  0  2 |  *  * 40   * |  0  1   0  6   0 |  0  6   0 12   0 |  0 12   0  8  0 | 0  8  0 1
.. .x .. .. ..    |  0  2 |  *  *  * 240 |  0  0   1  1   4 |  0  1   4  4   4 |  0  4   4  4  1 | 0  4  1 1
------------------+-------+--------------+------------------+------------------+-----------------+----------
x.3o. .. .. ..    |  3  0 |  3  0  0   0 | 80  *   *  *   * |  4  1   0  0   0 |  4  4   0  0  0 | 1  4  0 0
xx .. .. .. ..&#x |  2  2 |  1  2  1   0 |  * 40   *  *   *   0  6   0  0   0 |  0 12   0  0  0 | 0  8  0 0
.. ox .. .. ..&#x |  1  2 |  0  2  0   1 |  *  * 240  *   * |  0  1   4  0   0 |  0  4   4  0  0 | 0  4  1 0
.x3.x .. .. ..    |  0  6 |  0  0  3   3 |  *  *   * 80   * |  0  1   0  4   0 |  0  4   0  4  0 | 0  4  0 1
.. .x3.o .. ..    |  0  3 |  0  0  0   3 |  *  *   *  * 320 |  0  0   1  1   2 |  0  1   2  2  1 | 0  2  1 1
------------------+-------+--------------+------------------+------------------+-----------------+----------
x.3o.3o. .. ..      4  0 |  6  0  0   0 |  4  0   0  0   0 | 80  *   *  *   * |  2  1   0  0  0 | 1  2  0 0
xx3ox .. .. ..&#x   3  6 |  3  6  3   3 |  1  3   3  1   0 |  * 80   *  *   * |  0  4   0  0  0 | 0  4  0 0
.. ox3oo .. ..&#x   1  3 |  0  3  0   3 |  0  0   3  0   1 |  *  * 320  *   * |  0  1   2  0  0 | 0  2  1 0
.x3.x3.o .. ..      0 12 |  0  0  6  12 |  0  0   0  4   4 |  *  *   * 80   * |  0  1   0  2  0 | 0  2  0 1
.. .x3.o3.o ..      0  4 |  0  0  0   6 |  0  0   0  0   4 |  *  *   *  * 160 |  0  0   1  1  1 | 0  1  1 1
------------------+-------+--------------+------------------+------------------+-----------------+----------
x.3o.3o.3o. ..      5  0 | 10  0  0   0 | 10  0   0  0   0 |  5  0   0  0   0 | 32  *   *  *  * | 1  1  0 0
xx3ox3oo .. ..&#x   4 12 |  6 12  6  12 |  4  6  12  4   4 |  1  4   4  1   0 |  * 80   *  *  * | 0  2  0 0
.. ox3oo3oo ..&#x   1  4 |  0  4  0   6 |  0  0   6  0   4 |  0  0   4  0   1 |  *  * 160  *  * | 0  1  1 0
.x3.x3.o3.o ..      0 20 |  0  0 10  30 |  0  0   0 10  20 |  0  0   0  5   5 |  *  *   * 32  * | 0  1  0 1
.. .x3.o3.o4.o      0  8 |  0  0  0  24 |  0  0   0  0  32 |  0  0   0  0  16 |  *  *   *  * 10 | 0  0  1 1
------------------+-------+--------------+------------------+------------------+-----------------+----------
x.3o.3o.3o.4o.     10  0 | 40  0  0   0 | 80  0   0  0   0 | 80  0   0  0   0 | 32  0   0  0  0 | 1  *  * *
xx3ox3oo3oo ..&#x   5 20 | 10 20 10  30 | 10 10  30 10  20 |  5 10  20  5   5 |  1  5   5  1  0 | * 32  * *
.. ox3oo3oo4oo&#x   1  8 |  0  8  0  24 |  0  0  24  0  32 |  0  0  32  0  16 |  0  0  16  0  1 | *  * 10 *
.x3.x3.o3.o4.o      0 80 |  0  0 40 240 |  0  0   0 80 320 |  0  0   0 80 160 |  0  0   0 32 10 | *  *  * 1

oo3oo3oo *b3ox3xx&#x   → height = 0
(tac || tot)

o.3o.3o. *b3o.3o.    | 10  * |  8  8   0  0 | 24  24  8   0  0 | 32  32 24  0  0  0 |  8  8  8  8 32  0  0  0 | 1  1  8  8 0
.o3.o3.o *b3.o3.o    |  * 80 |  0  1   6  1 |  0   6  1  12  6 |  0  12  6  4  4 12 |  0  0  4  4 12  1  4  4 | 0  1  4  4 1
---------------------+-------+--------------+------------------+--------------------+-------------------------+-------------
.. .. ..    .. x.    |  2  0 | 40  *   *  * |  6   0  1   0  0 | 12   0  6  0  0  0 |  4  4  0  0 12  0  0  0 | 1  0  4  4 0
oo3oo3oo *b3oo3oo&#x |  1  1 |  * 80   *  * |  0   6  1   0  0 |  0  12  6  0  0  0 |  0  0  4  4 12  0  0  0 | 0  1  4  4 0
.. .. ..    .x ..    |  0  2 |  *  * 240  * |  0   1  0   4  1 |  0   4  1  2  2  4 |  0  0  2  2  4  1  2  2 | 0  1  2  2 1
.. .. ..    .. .x    |  0  2 |  *  *   * 40 |  0   0  1   0  6 |  0   0  6  0  0 12 |  0  0  0  0 12  0  4  4 | 0  0  4  4 1
---------------------+-------+--------------+------------------+--------------------+-------------------------+-------------
.. .. ..    o.3x.    |  3  0 |  3  0   0  0 | 80   *  *   *  * |  4   0  1  0  0  0 |  2  2  0  0  4  0  0  0 | 1  0  2  2 0
.. .. ..    ox ..&#x |  1  2 |  0  2   1  0 |  * 240  *   *  * |  0   4  1  0  0  0 |  0  0  2  2  4  0  0  0 | 0  1  2  2 0
.. .. ..    .. xx&#x |  2  2 |  1  2   0  1 |  *   * 40   *  *   0   0  6  0  0  0 |  0  0  0  0 12  0  0  0 | 0  0  4  4 0
.. .o .. *b3.x ..    |  0  3 |  0  0   3  0 |  *   *  * 320  * |  0   1  0  1  1  1 |  0  0  1  1  1  1  1  1 | 0  1  1  1 1
.. .. ..    .x3.x    |  0  6 |  0  0   3  3 |  *   *  *   * 80 |  0   0  1  0  0  4 |  0  0  0  0  4  0  2  2 | 0  0  2  2 1
---------------------+-------+--------------+------------------+--------------------+-------------------------+-------------
.. o. .. *b3o.3x.      4  0 |  6  0   0  0 |  4   0  0   0  0 | 80   *  *  *  *  * |  1  1  0  0  1  0  0  0 | 1  0  1  1 0
.. oo .. *b3ox ..&#x   1  3 |  0  3   3  0 |  0   3  0   1  0 |  * 320  *  *  *  * |  0  0  1  1  1  0  0  0 | 0  1  1  1 0
.. .. ..    ox3xx&#x   3  6 |  3  6   3  3 |  1   3  3   0  1 |  *   * 80  *  *  * |  0  0  0  0  4  0  0  0 | 0  0  2  2 0
.o3.o .. *b3.x ..      0  4 |  0  0   6  0 |  0   0  0   4  0 |  *   *  * 80  *  * |  0  0  1  0  0  1  1  0 | 0  1  1  0 1
.. .o3.o *b3.x ..      0  4 |  0  0   6  0 |  0   0  0   4  0 |  *   *  *  * 80  * |  0  0  0  1  0  1  0  1 | 0  1  0  1 1
.. .o .. *b3.x3.x      0 12 |  0  0  12  6 |  0   0  0   4  4 |  *   *  *  *  * 80 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
---------------------+-------+--------------+------------------+--------------------+-------------------------+-------------
o.3o. .. *b3o.3x.      5  0 | 10  0   0  0 | 10   0  0   0  0 |  5   0  0  0  0  0 | 16  *  *  *  *  *  *  * | 1  0  1  0 0
.. o.3o. *b3o.3x.      5  0 | 10  0   0  0 | 10   0  0   0  0 |  5   0  0  0  0  0 |  * 16  *  *  *  *  *  * | 1  0  0  1 0
oo3oo .. *b3ox ..&#x   1  4 |  0  4   6  0 |  0   6  0   4  0 |  0   4  0  1  0  0 |  *  * 80  *  *  *  *  * | 0  1  1  0 0
.. oo3oo *b3ox ..&#x   1  4 |  0  4   6  0 |  0   6  0   4  0 |  0   4  0  0  1  0 |  *  *  * 80  *  *  *  * | 0  1  0  1 0
.. oo .. *b3ox3xx&#x   4 12 |  6 12  12  6 |  4  12  6   4  4 |  1   4  4  0  0  1 |  *  *  *  * 80  *  *  * | 0  0  1  1 0
.o3.o3.o *b3.x ..      0  8 |  0  0  24  0 |  0   0  0  32  0 |  0   0  0  8  8  0 |  *  *  *  *  * 10  *  * | 0  1  0  0 1
.o3.o .. *b3.x3.x      0 20 |  0  0  30 10 |  0   0  0  20 10 |  0   0  0  5  0  5 |  *  *  *  *  *  * 16  * | 0  0  1  0 1
.. .o3.o *b3.x3.x      0 20 |  0  0  30 10 |  0   0  0  20 10 |  0   0  0  0  5  5 |  *  *  *  *  *  *  * 16 | 0  0  0  1 1
---------------------+-------+--------------+------------------+--------------------+-------------------------+-------------
o.3o.3o. *b3o.3x.     10  0 | 40  0   0  0 | 80   0  0   0  0 | 80   0  0  0  0  0 | 16 16  0  0  0  0  0  0 | 1  *  *  * *
oo3oo3oo *b3ox ..&#x   1  8 |  0  8  24  0 |  0  24  0  32  0 |  0  32  0  8  8  0 |  0  0  8  8  0  1  0  0 | * 10  *  * *
oo3oo .. *b3ox3xx&#x   5 20 | 10 20  30 10 | 10  30 10  20 10 |  5  20 10  5  0  5 |  1  0  5  0  5  0  1  0 | *  * 16  * *
.. oo3oo *b3ox3xx&#x   5 20 | 10 20  30 10 | 10  30 10  20 10 |  5  20 10  0  5  5 |  0  1  0  5  5  0  0  1 | *  *  * 16 *
.o3.o3.o *b3.x3.x      0 80 |  0  0 240 40 |  0   0  0 320 80 |  0   0  0 80 80 80 |  0  0  0  0  0 10 16 16 | *  *  *  * 1

© 2004-2026
top of page