Acronym test
Name tesseractic tetracomb,
4D hypercubical honeycomb4),
Voronoi complex of C4 lattice,
Delone complex of C4 lattice
Vertex layers
(first ones only)
 Layer Symmetry Subsymmetries o4o3o3o4o o4o3o3o . . o3o3o4o 1 x4o3o3o4o x4o3o3o .hypercell first . o3o3o4overtex first 2 x4o3o3q . . q3o3o4overtex figure 3 x4o3q3o . . o3q3o4o 4a x4q3o3o . . o3o3q4o 4b x4o3o3Q . 5a d4o3o3o . . o3o3o4u 5b x4o3q3q . . Q3o3o4o ... ... ...
(Q=2q, d=u+x=3x)
Coordinates (i, j, k, l)           i.e. all integer touples
Dual (selfdual)
Confer
more general:
xPo3o...o3o4o   xPo3o...o3oPxQ*a
related tesselations:
Voronoi complex of bct lattice   Delone complex of bct lattice
general polytopal classes:
hypercubical honeycomb   noble polytopes   partial Stott expansions
External

Incidence matrix according to Dynkin symbol

```x4o3o3o4o   (N → ∞)

. . . . . |  N ♦  8 | 24 | 32 | 16
----------+----+----+----+----+---
x . . . . |  2 | 4N ♦  6 | 12 |  8
----------+----+----+----+----+---
x4o . . . |  4 |  4 | 6N |  4 |  4
----------+----+----+----+----+---
x4o3o . . ♦  8 | 12 |  6 | 4N |  2
----------+----+----+----+----+---
x4o3o3o . ♦ 16 | 32 | 24 |  8 |  N

snubbed forms: s4o3o3o4o
```

```x4o3o3o4x   (N → ∞)

. . . . . | 16N ♦   4   4 |   6  12   6 |  4  12  12  4 | 1  4  6  4 1
----------+-----+---------+-------------+---------------+-------------
x . . . . |   2 | 32N   * ♦   3   3   0 |  3   6   3  0 | 1  3  3  1 0
. . . . x |   2 |   * 32N ♦   0   3   3 |  0   3   6  3 | 0  1  3  3 1
----------+-----+---------+-------------+---------------+-------------
x4o . . . |   4 |   4   0 | 24N   *   * |  2   2   0  0 | 1  2  1  0 0
x . . . x |   4 |   2   2 |   * 48N   * |  0   2   2  0 | 0  1  2  1 0
. . . o4x |   4 |   0   4 |   *   * 24N |  0   0   2  2 | 0  0  1  2 1
----------+-----+---------+-------------+---------------+-------------
x4o3o . . ♦   8 |  12   0 |   6   0   0 | 8N   *   *  * | 1  1  0  0 0
x4o . . x ♦   8 |   8   4 |   2   4   0 |  * 24N   *  * | 0  1  1  0 0
x . . o4x ♦   8 |   4   8 |   0   4   2 |  *   * 24N  * | 0  0  1  1 0
. . o3o4x ♦   8 |   0  12 |   0   0   6 |  *   *   * 8N | 0  0  0  1 1
----------+-----+---------+-------------+---------------+-------------
x4o3o3o . ♦  16 |  32   0 |  24   0   0 |  8   0   0  0 | N  *  *  * *
x4o3o . x ♦  16 |  24   8 |  12  12   0 |  2   6   0  0 | * 4N  *  * *
x4o . o4x ♦  16 |  16  16 |   4  16   4 |  0   4   4  0 | *  * 6N  * *
x . o3o4x ♦  16 |   8  24 |   0  12  12 |  0   0   6  2 | *  *  * 4N *
. o3o3o4x ♦  16 |   0  32 |   0   0  24 |  0   0   0  8 | *  *  *  * N

snubbed forms: s4o3o3o4x, s4o3o3o4s
```

```o3o3o *b3o4x   (N → ∞)

. . .    . . | 2N ♦  8 |  24 | 32 | 8 8
-------------+----+----+-----+----+----
. . .    . x |  2 | 8N ♦   6 | 12 | 4 4
-------------+----+----+-----+----+----
. . .    o4x |  4 |  4 | 12N |  4 | 2 2
-------------+----+----+-----+----+----
. o . *b3o4x ♦  8 | 12 |   6 | 8N | 1 1
-------------+----+----+-----+----+----
o3o . *b3o4x ♦ 16 | 32 |  24 |  8 | N *
. o3o *b3o4x ♦ 16 | 32 |  24 |  8 | * N
```

```x∞o x4o3o4o   (N → ∞)

. . . . . . |  N ♦ 2  6 | 12 12 | 24 8 | 16
------------+----+------+-------+------+---
x . . . . . |  2 | N  * ♦  6  0 | 12 0 |  8
. . x . . . |  2 | * 3N ♦  2  4 |  8 4 |  8
------------+----+------+-------+------+---
x . x . . . |  4 | 2  2 | 3N  * |  4 0 |  4
. . x4o . . |  4 | 0  4 |  * 3N |  2 2 |  4
------------+----+------+-------+------+---
x . x4o . . ♦  8 | 4  8 |  4  2 | 3N * |  2
. . x4o3o . ♦  8 | 0 12 |  0  6 |  * N |  2
------------+----+------+-------+------+---
x . x4o3o . ♦ 16 | 8 24 | 12 12 |  6 2 |  N
```

```x∞x x4o3o4o   (N → ∞)

. . . . . . | 2N ♦ 1 1  6 |  6  6 12 | 12 12  8 | 8 8
------------+----+--------+----------+----------+----
x . . . . . |  2 | N *  * ♦  6  0  0 | 12  0  0 | 8 0
. x . . . . |  2 | * N  * ♦  0  6  0 |  0 12  0 | 0 8
. . x . . . |  2 | * * 6N ♦  1  1  4 |  4  4  4 | 4 4
------------+----+--------+----------+----------+----
x . x . . . |  4 | 2 0  2 | 3N  *  * |  4  0  0 | 4 0
. x x . . . |  4 | 0 2  2 |  * 3N  * |  0  4  0 | 0 4
. . x4o . . |  4 | 0 0  4 |  *  * 6N |  1  1  2 | 2 2
------------+----+--------+----------+----------+----
x . x4o . . ♦  8 | 4 0  8 |  4  0  2 | 3N  *  * | 2 0
. x x4o . . ♦  8 | 0 4  8 |  0  4  2 |  * 3N  * | 0 2
. . x4o3o . ♦  8 | 0 0 12 |  0  0  6 |  *  * 2N | 1 1
------------+----+--------+----------+----------+----
x . x4o3o . ♦ 16 | 8 0 24 | 12  0 12 |  6  0  2 | N *
. x x4o3o . ♦ 16 | 0 8 24 |  0 12 12 |  0  6  2 | * N
```

```x∞o x4o3o4x   (N → ∞)

. . . . . . | 8N ♦  2   3   3 |   6   6  3   6  3 |  6  12  6 1  3  3 1 | 2  6  6 2
------------+----+------------+-------------------+---------------------+----------
x . . . . . |  2 | 8N   *   * ♦   3   3  0   0  0 |  3   6  3 0  0  0 0 | 1  3  3 1
. . x . . . |  2 |  * 12N   * ♦   2   0  2   2  0 |  4   4  0 1  2  1 0 | 2  4  2 0
. . . . . x |  2 |  *   * 12N ♦   0   2  0   2  2 |  0   4  4 0  1  2 1 | 0  2  4 2
------------+----+------------+-------------------+---------------------+----------
x . x . . . |  4 |  2   2   0 | 12N   *  *   *  * |  2   2  0 0  0  0 0 | 1  2  1 0
x . . . . x |  4 |  2   0   2 |   * 12N  *   *  * |  0   2  2 0  0  0 0 | 0  1  2 1
. . x4o . . |  4 |  0   4   0 |   *   * 6N   *  * |  2   0  0 1  1  0 0 | 2  2  0 0
. . x . . x |  4 |  0   2   2 |   *   *  * 12N  * |  0   2  0 0  1  1 0 | 0  2  2 0
. . . . o4x |  4 |  0   0   4 |   *   *  *   * 6N |  0   0  2 0  0  1 1 | 0  0  2 2
------------+----+------------+-------------------+---------------------+----------
x . x4o . . ♦  8 |  4   8   0 |   4   0  2   0  0 | 6N   *  * *  *  * * | 1  1  0 0
x . x . . x ♦  8 |  4   4   4 |   2   2  0   2  0 |  * 12N  * *  *  * * | 0  1  1 0
x . . . o4x ♦  8 |  4   0   8 |   0   4  0   0  2 |  *   * 6N *  *  * * | 0  0  1 1
. . x4o3o . ♦  8 |  0  12   0 |   0   0  6   0  0 |  *   *  * N  *  * * | 2  0  0 0
. . x4o . x ♦  8 |  0   8   4 |   0   0  2   4  0 |  *   *  * * 3N  * * | 0  2  0 0
. . x . o4x ♦  8 |  0   4   8 |   0   0  0   4  2 |  *   *  * *  * 3N * | 0  0  2 0
. . . o3o4x ♦  8 |  0   0  12 |   0   0  0   0  6 |  *   *  * *  *  * N | 0  0  0 2
------------+----+------------+-------------------+---------------------+----------
x . x4o3o . ♦ 16 |  8  24   0 |  12   0 12   0  0 |  6   0  0 2  0  0 0 | N  *  * *
x . x4o . x ♦ 16 |  8  16   8 |   8   4  4   8  0 |  2   4  0 0  2  0 0 | * 3N  * *
x . x . o4x ♦ 16 |  8   8  16 |   4   8  0   8  4 |  0   4  2 0  0  2 0 | *  * 3N *
x . . o3o4x ♦ 16 |  8   0  24 |   0  12  0   0 12 |  0   0  6 0  0  0 2 | *  *  * N
```

```x∞x x4o3o4x   (N → ∞)

. . . . . . | 16N ♦  1  1   3   3 |   3   3   3   3   3   6   3 |  3   6  3  3   6  3  1  3  3  1 | 1  3  3 1 1  3  3 1
------------+-----+---------------+-----------------------------+---------------------------------+--------------------
x . . . . . |   2 | 8N  *   *   * ♦   3   3   0   0   0   0   0 |  3   6  3  0   0  0  0  0  0  0 | 1  3  3 1 0  0  0 0
. x . . . . |   2 |  * 8N   *   * ♦   0   0   3   3   0   0   0 |  0   0  0  3   6  3  0  0  0  0 | 0  0  0 0 1  3  3 1
. . x . . . |   2 |  *  * 24N   * ♦   1   0   1   0   2   2   0 |  2   2  0  2   2  0  1  2  1  0 | 1  2  1 0 1  2  1 0
. . . . . x |   2 |  *  *   * 24N ♦   0   1   0   1   0   2   2 |  0   2  2  0   2  2  0  1  2  1 | 0  1  2 1 0  1  2 1
------------+-----+---------------+-----------------------------+---------------------------------+--------------------
x . x . . . |   4 |  2  0   2   0 | 12N   *   *   *   *   *   * |  2   2  0  0   0  0  0  0  0  0 | 1  2  1 0 0  0  0 0
x . . . . x |   4 |  2  0   0   2 |   * 12N   *   *   *   *   * |  0   2  2  0   0  0  0  0  0  0 | 0  1  2 1 0  0  0 0
. x x . . . |   4 |  0  2   2   0 |   *   * 12N   *   *   *   * |  0   0  0  2   2  0  0  0  0  0 | 0  0  0 0 1  2  1 0
. x . . . x |   4 |  0  2   0   2 |   *   *   * 12N   *   *   * |  0   0  0  0   2  2  0  0  0  0 | 0  0  0 0 0  1  2 1
. . x4o . . |   4 |  0  0   4   0 |   *   *   *   * 12N   *   * |  1   0  0  1   0  0  1  1  0  0 | 1  1  0 0 1  1  0 0
. . x . . x |   4 |  0  0   2   2 |   *   *   *   *   * 24N   * |  0   1  0  0   1  0  0  1  1  0 | 0  1  1 0 0  1  1 0
. . . . o4x |   4 |  0  0   0   4 |   *   *   *   *   *   * 12N |  0   0  1  0   0  1  0  0  1  1 | 0  0  1 1 0  0  1 1
------------+-----+---------------+-----------------------------+---------------------------------+--------------------
x . x4o . . ♦   8 |  4  0   8   0 |   4   0   0   0   2   0   0 | 6N   *  *  *   *  *  *  *  *  * | 1  1  0 0 0  0  0 0
x . x . . x ♦   8 |  4  0   4   4 |   2   2   0   0   0   2   0 |  * 12N  *  *   *  *  *  *  *  * | 0  1  1 0 0  0  0 0
x . . . o4x ♦   8 |  4  0   0   8 |   0   4   0   0   0   0   2 |  *   * 6N  *   *  *  *  *  *  * | 0  0  1 1 0  0  0 0
. x x4o . . ♦   8 |  0  4   8   0 |   0   0   4   0   2   0   0 |  *   *  * 6N   *  *  *  *  *  * | 0  0  0 0 1  1  0 0
. x x . . x ♦   8 |  0  4   4   4 |   0   0   2   2   0   2   0 |  *   *  *  * 12N  *  *  *  *  * | 0  0  0 0 0  1  1 0
. x . . o4x ♦   8 |  0  4   0   8 |   0   0   0   4   0   0   2 |  *   *  *  *   * 6N  *  *  *  * | 0  0  0 0 0  0  1 1
. . x4o3o . ♦   8 |  0  0  12   0 |   0   0   0   0   6   0   0 |  *   *  *  *   *  * 2N  *  *  * | 1  0  0 0 1  0  0 0
. . x4o . x ♦   8 |  0  0   8   4 |   0   0   0   0   2   4   0 |  *   *  *  *   *  *  * 6N  *  * | 0  1  0 0 0  1  0 0
. . x . o4x ♦   8 |  0  0   4   8 |   0   0   0   0   0   4   2 |  *   *  *  *   *  *  *  * 6N  * | 0  0  1 0 0  0  1 0
. . . o3o4x ♦   8 |  0  0   0  12 |   0   0   0   0   0   0   6 |  *   *  *  *   *  *  *  *  * 2N | 0  0  0 1 0  0  0 1
------------+-----+---------------+-----------------------------+---------------------------------+--------------------
x . x4o3o . ♦  16 |  8  0  24   0 |  12   0   0   0  12   0   0 |  6   0  0  0   0  0  2  0  0  0 | N  *  * * *  *  * *
x . x4o . x ♦  16 |  8  0  16   8 |   8   4   0   0   4   8   0 |  2   4  0  0   0  0  0  2  0  0 | * 3N  * * *  *  * *
x . x . o4x ♦  16 |  8  0   8  16 |   4   8   0   0   0   8   4 |  0   4  2  0   0  0  0  0  2  0 | *  * 3N * *  *  * *
x . . o3o4x ♦  16 |  8  0   0  24 |   0  12   0   0   0   0  12 |  0   0  6  0   0  0  0  0  0  2 | *  *  * N *  *  * *
. x x4o3o . ♦  16 |  0  8  24   0 |   0   0  12   0  12   0   0 |  0   0  0  6   0  0  2  0  0  0 | *  *  * * N  *  * *
. x x4o . x ♦  16 |  0  8  16   8 |   0   0   8   4   4   8   0 |  0   0  0  2   4  0  0  2  0  0 | *  *  * * * 3N  * *
. x x . o4x ♦  16 |  0  8   8  16 |   0   0   4   8   0   8   4 |  0   0  0  0   4  2  0  0  2  0 | *  *  * * *  * 3N *
. x . o3o4x ♦  16 |  0  8   0  24 |   0   0   0  12   0   0  12 |  0   0  0  0   0  6  0  0  0  2 | *  *  * * *  *  * N
```

```x∞o o3o3o *d4x   (N → ∞)

. . . . .    . | 2N ♦  2  6 | 12 12 | 24 4 4 | 8 8
---------------+----+-------+-------+--------+----
x . . . .    . |  2 | 2N  * ♦  6  0 | 12 0 0 | 4 4
. . . . .    x |  2 |  * 6N ♦  2  4 |  8 2 2 | 4 4
---------------+----+-------+-------+--------+----
x . . . .    x |  4 |  2  2 | 6N  * |  4 0 0 | 2 2
. . . o . *d4x |  4 |  0  4 |  * 6N |  2 1 1 | 2 2
---------------+----+-------+-------+--------+----
x . . o . *d4x ♦  8 |  4  8 |  4  2 | 6N * * | 1 1
. . o3o . *d4x ♦  8 |  0 12 |  0  6 |  * N * | 2 0
. . . o3o *d4x ♦  8 |  0 12 |  0  6 |  * * N | 0 2
---------------+----+-------+-------+--------+----
x . o3o . *d4x ♦ 16 |  8 24 | 12 12 |  6 2 0 | N *
x . . o3o *d4x ♦ 16 |  8 24 | 12 12 |  6 0 2 | * N
```

```x∞x o3o3o *d4x   (N → ∞)

. . . . .    . | 4N ♦  1  1   6 |  6  6  12 | 12 12  4  4 | 4 4 4 4
---------------+----+-----------+-----------+-------------+--------
x . . . .    . |  2 | 2N  *   * ♦  6  0   0 | 12  0  0  0 | 4 4 0 0
. x . . .    . |  2 |  * 2N   * ♦  0  6   0 |  0 12  0  0 | 0 0 4 4
. . . . .    x |  2 |  *  * 12N ♦  1  1   4 |  4  4  2  2 | 2 2 2 2
---------------+----+-----------+-----------+-------------+--------
x . . . .    x |  4 |  2  0   2 | 6N  *   * |  4  0  0  0 | 2 2 0 0
. x . . .    x |  4 |  0  2   2 |  * 6N   * |  0  4  0  0 | 0 0 2 2
. . . o . *d4x |  4 |  0  0   4 |  *  * 12N |  1  1  1  1 | 1 1 1 1
---------------+----+-----------+-----------+-------------+--------
x . . o . *d4x ♦  8 |  4  0   8 |  4  0   2 | 6N  *  *  * | 1 1 0 0
. x . o . *d4x ♦  8 |  0  4   8 |  0  4   2 |  * 6N  *  * | 0 0 1 1
. . o3o . *d4x ♦  8 |  0  0  12 |  0  0   6 |  *  * 2N  * | 1 0 1 0
. . . o3o *d4x ♦  8 |  0  0  12 |  0  0   6 |  *  *  * 2N | 0 1 0 1
---------------+----+-----------+-----------+-------------+--------
x . o3o . *d4x ♦ 16 |  8  0  24 | 12  0  12 |  6  0  2  0 | N * * *
x . . o3o *d4x ♦ 16 |  8  0  24 | 12  0  12 |  6  0  0  2 | * N * *
. x o3o . *d4x ♦ 16 |  0  8  24 |  0 12  12 |  0  6  2  0 | * * N *
. x . o3o *d4x ♦ 16 |  0  8  24 |  0 12  12 |  0  6  0  2 | * * * N
```

```x4o4o x4o4o   (N → ∞)

. . . . . . |  N ♦  4  4 | 4 16 4 | 16 16 | 16
------------+----+-------+--------+-------+---
x . . . . . |  2 | 2N  * ♦ 2  4 0 |  8  4 |  8
. . . x . . |  2 |  * 2N ♦ 0  4 2 |  4  8 |  8
------------+----+-------+--------+-------+---
x4o . . . . |  4 |  4  0 | N  * * |  4  0 |  4
x . . x . . |  4 |  2  2 | * 4N * |  2  2 |  4
. . . x4o . |  4 |  0  4 | *  * N |  0  4 |  4
------------+----+-------+--------+-------+---
x4o . x . . ♦  8 |  8  4 | 2  4 0 | 2N  * |  2
x . . x4o . ♦  8 |  4  8 | 0  4 2 |  * 2N |  2
------------+----+-------+--------+-------+---
x4o . x4o . ♦ 16 | 16 16 | 4 16 4 |  4  4 |  N
```

```x4o4o o4x4o   (N → ∞)

. . . . . . | 2N ♦  4  4 |  4 16 2 2 | 16  8  8 | 8 8
------------+----+-------+-----------+----------+----
x . . . . . |  2 | 4N  * ♦  2  4 0 0 |  8  2  2 | 4 4
. . . . x . |  2 |  * 4N ♦  0  4 1 1 |  4  4  4 | 4 4
------------+----+-------+-----------+----------+----
x4o . . . . |  4 |  4  0 | 2N  * * * |  4  0  0 | 2 2
x . . . x . |  4 |  2  2 |  * 8N * * |  2  1  1 | 2 2
. . . o4x . |  4 |  0  4 |  *  * N * |  0  4  0 | 4 0
. . . . x4o |  4 |  0  4 |  *  * * N |  0  0  4 | 0 4
------------+----+-------+-----------+----------+----
x4o . . x . ♦  8 |  8  4 |  2  4 0 0 | 4N  *  * | 1 1
x . . o4x . ♦  8 |  4  8 |  0  4 2 0 |  * 2N  * | 2 0
x . . . x4o ♦  8 |  4  8 |  0  4 0 2 |  *  * 2N | 0 2
------------+----+-------+-----------+----------+----
x4o . o4x . ♦ 16 | 16 16 |  4 16 4 0 |  4  4  0 | N *
x4o . . x4o ♦ 16 | 16 16 |  4 16 0 4 |  4  0  4 | * N
```

```x4o4o x4o4x   (N → ∞)

. . . . . . | 4N ♦  4  2  2 |  4  8  8 1  2 1 |  8  8  4  8  4 | 4  8 4
------------+----+----------+-----------------+----------------+-------
x . . . . . |  2 | 8N  *  * ♦  2  2  2 0  0 0 |  4  4  1  2  1 | 2  4 2
. . . x . . |  2 |  * 4N  * ♦  0  4  0 1  1 0 |  4  0  4  4  0 | 4  4 0
. . . . . x |  2 |  *  * 4N ♦  0  0  4 0  1 1 |  0  4  0  4  4 | 0  4 4
------------+----+----------+-----------------+----------------+-------
x4o . . . . |  4 |  4  0  0 | 4N  *  * *  * * |  2  2  0  0  0 | 1  2 1
x . . x . . |  4 |  2  2  0 |  * 8N  * *  * * |  2  0  1  1  0 | 2  2 0
x . . . . x |  4 |  2  0  2 |  *  * 8N *  * * |  0  2  0  1  1 | 0  2 2
. . . x4o . |  4 |  0  4  0 |  *  *  * N  * * |  0  0  4  0  0 | 4  0 0
. . . x . x |  4 |  0  2  2 |  *  *  * * 2N * |  0  0  0  4  0 | 0  4 0
. . . . o4x |  4 |  0  0  4 |  *  *  * *  * N |  0  0  0  0  4 | 0  0 4
------------+----+----------+-----------------+----------------+-------
x4o . x . . ♦  8 |  8  4  0 |  2  4  0 0  0 0 | 4N  *  *  *  * | 1  1 0
x4o . . . x ♦  8 |  8  0  4 |  2  0  4 0  0 0 |  * 4N  *  *  * | 0  1 1
x . . x4o . ♦  8 |  4  8  0 |  0  4  0 2  0 0 |  *  * 2N  *  * | 2  0 0
x . . x . x ♦  8 |  4  4  4 |  0  2  2 0  2 0 |  *  *  * 4N  * | 0  2 0
x . . . o4x ♦  8 |  4  0  8 |  0  0  4 0  0 2 |  *  *  *  * 2N | 0  0 2
------------+----+----------+-----------------+----------------+-------
x4o . x4o . ♦ 16 | 16 16  0 |  4 16  0 4  0 0 |  4  0  4  0  0 | N  * *
x4o . x . x ♦ 16 | 16  8  8 |  4  8  8 0  4 0 |  2  2  0  4  0 | * 2N *
x4o . . o4x ♦ 16 | 16  0 16 |  4  0 16 0  0 4 |  0  4  0  0  4 | *  * N
```

```o4x4o o4x4o   (N → ∞)

. . . . . . | 4N ♦  4  4 |  2  2  16  2  2 |  8  8  8  8 | 4 4 4 4
------------+----+-------+-----------------+-------------+--------
. x . . . . |  2 | 8N  * ♦  1  1   4  0  0 |  4  4  2  2 | 2 2 2 2
. . . . x . |  2 |  * 8N ♦  0  0   4  1  1 |  2  2  4  4 | 2 2 2 2
------------+----+-------+-----------------+-------------+--------
o4x . . . . |  4 |  4  0 | 2N  *   *  *  * |  4  0  0  0 | 2 2 0 0
. x4o . . . |  4 |  4  0 |  * 2N   *  *  * |  0  4  0  0 | 0 0 2 2
. x . . x . |  4 |  2  2 |  *  * 16N  *  * |  1  1  1  1 | 1 1 1 1
. . . o4x . |  4 |  0  4 |  *  *   * 2N  * |  0  0  4  0 | 2 0 2 0
. . . . x4o |  4 |  0  4 |  *  *   *  * 2N |  0  0  0  4 | 0 2 0 2
------------+----+-------+-----------------+-------------+--------
o4x . . x . ♦  8 |  8  4 |  2  0   4  0  0 | 4N  *  *  * | 1 1 0 0
. x4o . x . ♦  8 |  8  4 |  0  2   4  0  0 |  * 4N  *  * | 0 0 1 1
. x . o4x . ♦  8 |  4  8 |  0  0   4  2  0 |  *  * 4N  * | 1 0 1 0
. x . . x4o ♦  8 |  4  8 |  0  0   4  0  2 |  *  *  * 4N | 0 1 0 1
------------+----+-------+-----------------+-------------+--------
o4x . o4x . ♦ 16 | 16 16 |  4  0  16  4  0 |  4  0  4  0 | N * * *
o4x . . x4o ♦ 16 | 16 16 |  4  0  16  0  4 |  4  0  0  4 | * N * *
. x4o o4x . ♦ 16 | 16 16 |  0  4  16  4  0 |  0  4  4  0 | * * N *
. x4o . x4o ♦ 16 | 16 16 |  0  4  16  0  4 |  0  4  0  4 | * * * N
```

```o4x4o x4o4x   (N → ∞)

. . . . . . | 8N ♦   4  2  2 |  2  2   8   8  1  2  1 |  4  4  4  4  4  8  4 | 2  4 2 2  4 2
------------+----+-----------+------------------------+----------------------+--------------
. x . . . . |  2 | 16N  *  * ♦  1  1   2   2  0  0  0 |  2  2  2  2  1  2  1 | 1  2 1 1  2 1
. . . x . . |  2 |   * 8N  * ♦  0  0   4   0  1  1  0 |  2  0  2  0  4  4  0 | 2  2 0 2  2 0
. . . . . x |  2 |   *  * 8N ♦  0  0   0   4  0  1  1 |  0  2  0  2  0  4  4 | 0  2 2 0  2 2
------------+----+-----------+------------------------+----------------------+--------------
o4x . . . . |  4 |   4  0  0 | 4N  *   *   *  *  *  * |  2  2  0  0  0  0  0 | 1  2 1 0  0 0
. x4o . . . |  4 |   4  0  0 |  * 4N   *   *  *  *  * |  0  0  2  2  0  0  0 | 0  0 0 1  2 1
. x . x . . |  4 |   2  2  0 |  *  * 16N   *  *  *  * |  1  0  1  0  1  1  0 | 1  1 0 1  1 0
. x . . . x |  4 |   2  0  2 |  *  *   * 16N  *  *  * |  0  1  0  1  0  1  1 | 0  1 1 0  1 1
. . . x4o . |  4 |   0  4  0 |  *  *   *   * 2N  *  * |  0  0  0  0  4  0  0 | 2  0 0 2  0 0
. . . x . x |  4 |   0  2  2 |  *  *   *   *  * 4N  * |  0  0  0  0  0  4  0 | 0  2 0 0  2 0
. . . . o4x |  4 |   0  0  4 |  *  *   *   *  *  * 2N |  0  0  0  0  0  0  4 | 0  0 2 0  0 2
------------+----+-----------+------------------------+----------------------+--------------
o4x . x . . ♦  8 |   8  4  0 |  2  0   4   0  0  0  0 | 4N  *  *  *  *  *  * | 1  1 0 0  0 0
o4x . . . x ♦  8 |   8  0  4 |  2  0   0   4  0  0  0 |  * 4N  *  *  *  *  * | 0  1 1 0  0 0
. x4o x . . ♦  8 |   8  4  0 |  0  2   4   0  0  0  0 |  *  * 4N  *  *  *  * | 0  0 0 1  1 0
. x4o . . x ♦  8 |   8  0  4 |  0  2   0   4  0  0  0 |  *  *  * 4N  *  *  * | 0  0 0 0  1 1
. x . x4o . ♦  8 |   4  8  0 |  0  0   4   0  2  0  0 |  *  *  *  * 4N  *  * | 1  0 0 1  0 0
. x . x . x ♦  8 |   4  4  4 |  0  0   2   2  0  2  0 |  *  *  *  *  * 8N  * | 0  1 0 0  1 0
. x . . o4x ♦  8 |   4  0  8 |  0  0   0   4  0  0  2 |  *  *  *  *  *  * 4N | 0  0 1 0  0 1
------------+----+-----------+------------------------+----------------------+--------------
o4x . x4o . ♦ 16 |  16 16  0 |  4  0  16   0  4  0  0 |  4  0  0  0  4  0  0 | N  * * *  * *
o4x . x . x ♦ 16 |  16  8  8 |  4  0   8   8  0  4  0 |  2  2  0  0  0  4  0 | * 2N * *  * *
o4x . . o4x ♦ 16 |  16  0 16 |  4  0   0  16  0  0  4 |  0  4  0  0  0  0  4 | *  * N *  * *
. x4o x4o . ♦ 16 |  16 16  0 |  0  4  16   0  4  0  0 |  0  0  4  0  4  0  0 | *  * * N  * *
. x4o x . x ♦ 16 |  16  8  8 |  0  4   8   8  0  4  0 |  0  0  2  2  0  4  0 | *  * * * 2N *
. x4o . o4x ♦ 16 |  16  0 16 |  0  4   0  16  0  0  4 |  0  0  0  4  0  0  4 | *  * * *  * N
```

```x4o4x x4o4x   (N → ∞)

. . . . . . | 16N ♦   2   2   2   2 |  1  2   4   4  1   4   4  1  2  1 |  2  2  4  4  2  4  2  2  2  2  4  2 | 1  2 1  2  4  2 1  2 1
------------+-----+-----------------+-----------------------------------+-------------------------------------+-----------------------
x . . . . . |   2 | 16N   *   *   * ♦  1  1   2   2  0   0   0  0  0  0 |  2  2  2  2  1  2  1  0  0  0  0  0 | 1  2 1  1  2  1 0  0 0
. . x . . . |   2 |   * 16N   *   * ♦  0  1   0   0  1   2   2  0  0  0 |  0  0  2  2  0  0  0  2  2  1  2  1 | 0  0 0  1  2  1 1  2 1
. . . x . . |   2 |   *   * 16N   * ♦  0  0   2   0  0   2   0  1  1  0 |  1  0  2  0  2  2  0  1  0  2  2  0 | 1  1 0  2  2  0 1  1 0
. . . . . x |   2 |   *   *   * 16N ♦  0  0   0   2  0   0   2  0  1  1 |  0  1  0  2  0  2  2  0  1  0  2  2 | 0  1 1  0  2  2 0  1 1
------------+-----+-----------------+-----------------------------------+-------------------------------------+-----------------------
x4o . . . . |   4 |   4   0   0   0 | 4N  *   *   *  *   *   *  *  *  * |  2  2  0  0  0  0  0  0  0  0  0  0 | 1  2 1  0  0  0 0  0 0
x . x . . . |   4 |   2   2   0   0 |  * 8N   *   *  *   *   *  *  *  * |  0  0  2  2  0  0  0  0  0  0  0  0 | 0  0 0  1  2  1 0  0 0
x . . x . . |   4 |   2   0   2   0 |  *  * 16N   *  *   *   *  *  *  * |  1  0  1  0  1  1  0  0  0  0  0  0 | 1  1 0  1  1  0 0  0 0
x . . . . x |   4 |   2   0   0   2 |  *  *   * 16N  *   *   *  *  *  * |  0  1  0  1  0  1  1  0  0  0  0  0 | 0  1 1  0  1  1 0  0 0
. o4x . . . |   4 |   0   4   0   0 |  *  *   *   * 4N   *   *  *  *  * |  0  0  0  0  0  0  0  2  2  0  0  0 | 0  0 0  0  0  0 1  2 1
. . x x . . |   4 |   0   2   2   0 |  *  *   *   *  * 16N   *  *  *  * |  0  0  1  0  0  0  0  1  0  1  1  0 | 0  0 0  1  1  0 1  1 0
. . x . . x |   4 |   0   2   0   2 |  *  *   *   *  *   * 16N  *  *  * |  0  0  0  1  0  0  0  0  1  0  1  1 | 0  0 0  0  1  1 0  1 1
. . . x4o . |   4 |   0   0   4   0 |  *  *   *   *  *   *   * 4N  *  * |  0  0  0  0  2  0  0  0  0  2  0  0 | 1  0 0  2  0  0 1  0 0
. . . x . x |   4 |   0   0   2   2 |  *  *   *   *  *   *   *  * 8N  * |  0  0  0  0  0  2  0  0  0  0  2  0 | 0  1 0  0  2  0 0  1 0
. . . . o4x |   4 |   0   0   0   4 |  *  *   *   *  *   *   *  *  * 4N |  0  0  0  0  0  0  2  0  0  0  0  2 | 0  0 1  0  0  2 0  0 1
------------+-----+-----------------+-----------------------------------+-------------------------------------+-----------------------
x4o . x . . ♦   8 |   8   0   4   0 |  2  0   4   0  0   0   0  0  0  0 | 4N  *  *  *  *  *  *  *  *  *  *  * | 1  1 0  0  0  0 0  0 0
x4o . . . x ♦   8 |   8   0   0   4 |  2  0   0   4  0   0   0  0  0  0 |  * 4N  *  *  *  *  *  *  *  *  *  * | 0  1 1  0  0  0 0  0 0
x . x x . . ♦   8 |   4   4   4   0 |  0  2   2   0  0   2   0  0  0  0 |  *  * 8N  *  *  *  *  *  *  *  *  * | 0  0 0  1  1  0 0  0 0
x . x . . x ♦   8 |   4   4   0   4 |  0  2   0   2  0   0   2  0  0  0 |  *  *  * 8N  *  *  *  *  *  *  *  * | 0  0 0  0  1  1 0  0 0
x . . x4o . ♦   8 |   4   0   8   0 |  0  0   4   0  0   0   0  2  0  0 |  *  *  *  * 4N  *  *  *  *  *  *  * | 1  0 0  1  0  0 0  0 0
x . . x . x ♦   8 |   4   0   4   4 |  0  0   2   2  0   0   0  0  2  0 |  *  *  *  *  * 8N  *  *  *  *  *  * | 0  1 0  0  1  0 0  0 0
x . . . o4x ♦   8 |   4   0   0   8 |  0  0   0   4  0   0   0  0  0  2 |  *  *  *  *  *  * 4N  *  *  *  *  * | 0  0 1  0  0  1 0  0 0
. o4x x . . ♦   8 |   0   8   4   0 |  0  0   0   0  2   4   0  0  0  0 |  *  *  *  *  *  *  * 4N  *  *  *  * | 0  0 0  0  0  0 1  1 0
. o4x . . x ♦   8 |   0   8   0   4 |  0  0   0   0  2   0   4  0  0  0 |  *  *  *  *  *  *  *  * 4N  *  *  * | 0  0 0  0  0  0 0  1 1
. . x x4o . ♦   8 |   0   4   8   0 |  0  0   0   0  0   4   0  2  0  0 |  *  *  *  *  *  *  *  *  * 4N  *  * | 0  0 0  1  0  0 1  0 0
. . x x . x ♦   8 |   0   4   4   4 |  0  0   0   0  0   2   2  0  2  0 |  *  *  *  *  *  *  *  *  *  * 8N  * | 0  0 0  0  1  0 0  1 0
. . x . o4x ♦   8 |   0   4   0   8 |  0  0   0   0  0   0   4  0  0  2 |  *  *  *  *  *  *  *  *  *  *  * 4N | 0  0 0  0  0  1 0  0 1
------------+-----+-----------------+-----------------------------------+-------------------------------------+-----------------------
x4o . x4o . ♦  16 |  16   0  16   0 |  4  0  16   0  0   0   0  4  0  0 |  4  0  0  0  4  0  0  0  0  0  0  0 | N  * *  *  *  * *  * *
x4o . x . x ♦  16 |  16   0   8   8 |  4  0   8   8  0   0   0  0  4  0 |  2  2  0  0  0  4  0  0  0  0  0  0 | * 2N *  *  *  * *  * *
x4o . . o4x ♦  16 |  16   0   0  16 |  4  0   0  16  0   0   0  0  0  4 |  0  4  0  0  0  0  4  0  0  0  0  0 | *  * N  *  *  * *  * *
x . x x4o . ♦  16 |   8   8  16   0 |  0  4   8   0  0   8   0  4  0  0 |  0  0  4  0  2  0  0  0  0  2  0  0 | *  * * 2N  *  * *  * *
x . x x . x ♦  16 |   8   8   8   8 |  0  4   4   4  0   4   4  0  4  0 |  0  0  2  2  0  2  0  0  0  0  2  0 | *  * *  * 4N  * *  * *
x . x . o4x ♦  16 |   8   8   0  16 |  0  4   0   8  0   0   8  0  0  4 |  0  0  0  4  0  0  2  0  0  0  0  2 | *  * *  *  * 2N *  * *
. o4x x4o . ♦  16 |   0  16  16   0 |  0  0   0   0  4  16   0  4  0  0 |  0  0  0  0  0  0  0  4  0  4  0  0 | *  * *  *  *  * N  * *
. o4x x . x ♦  16 |   0  16   8   8 |  0  0   0   0  4   8   8  0  4  0 |  0  0  0  0  0  0  0  2  2  0  4  0 | *  * *  *  *  * * 2N *
. o4x . o4x ♦  16 |   0  16   0  16 |  0  0   0   0  4   0  16  0  0  4 |  0  0  0  0  0  0  0  0  4  0  0  4 | *  * *  *  *  * *  * N
```

```x∞o x∞o x4o4o   (N → ∞)

. . . . . . . |  N ♦ 2 2  4 | 4  8  8 4 | 16 8 8 | 16
--------------+----+--------+-----------+--------+---
x . . . . . . |  2 | N *  * ♦ 2  4  0 0 |  8 4 0 |  8
. . x . . . . |  2 | * N  * ♦ 2  0  4 0 |  8 0 4 |  8
. . . . x . . |  2 | * * 2N ♦ 0  2  2 2 |  4 4 4 |  8
--------------+----+--------+-----------+--------+---
x . x . . . . |  4 | 2 2  0 | N  *  * * |  4 0 0 |  4
x . . . x . . |  4 | 2 0  2 | * 2N  * * |  2 2 0 |  4
. . x . x . . |  4 | 0 2  2 | *  * 2N * |  2 0 2 |  4
. . . . x4o . |  4 | 0 0  4 | *  *  * N |  0 2 2 |  4
--------------+----+--------+-----------+--------+---
x . x . x . . ♦  8 | 4 4  4 | 2  2  2 0 | 2N * * |  2
x . . . x4o . ♦  8 | 4 0  8 | 0  4  0 2 |  * N * |  2
. . x . x4o . ♦  8 | 0 4  8 | 0  0  4 2 |  * * N |  2
--------------+----+--------+-----------+--------+---
x . x . x4o . ♦ 16 | 8 8 16 | 4  8  8 4 |  4 2 2 |  N
```

```x∞o x∞o o4x4o   (N → ∞)

. . . . . . . | 2N ♦  2  2  4 |  4  8  8 2 2 | 16 4 4 4 4 | 8 8
--------------+----+----------+--------------+------------+----
x . . . . . . |  2 | 2N  *  * ♦  2  4  0 0 0 |  8 2 2 0 0 | 4 4
. . x . . . . |  2 |  * 2N  * ♦  2  0  4 0 0 |  8 0 0 2 2 | 4 4
. . . . . x . |  2 |  *  * 4N ♦  0  2  2 1 1 |  4 2 2 2 2 | 4 4
--------------+----+----------+--------------+------------+----
x . x . . . . |  4 |  2  2  0 | 2N  *  * * * |  4 0 0 0 0 | 2 2
x . . . . x . |  4 |  2  0  2 |  * 4N  * * * |  2 1 1 0 0 | 2 2
. . x . . x . |  4 |  0  2  2 |  *  * 4N * * |  2 0 0 1 1 | 2 2
. . . . o4x . |  4 |  0  0  4 |  *  *  * N * |  0 2 0 2 0 | 4 0
. . . . . x4o |  4 |  0  0  4 |  *  *  * * N |  0 0 2 0 2 | 0 4
--------------+----+----------+--------------+------------+----
x . x . . x . ♦  8 |  4  4  4 |  2  2  2 0 0 | 4N * * * * | 1 1
x . . . o4x . ♦  8 |  4  0  8 |  0  4  0 2 0 |  * N * * * | 2 0
x . . . . x4o ♦  8 |  4  0  8 |  0  4  0 0 2 |  * * N * * | 0 2
. . x . o4x . ♦  8 |  0  4  8 |  0  0  4 2 0 |  * * * N * | 2 0
. . x . . x4o ♦  8 |  0  4  8 |  0  0  4 0 2 |  * * * * N | 0 2
--------------+----+----------+--------------+------------+----
x . x . o4x . ♦ 16 |  8  8 16 |  4  8  8 4 0 |  4 2 0 2 0 | N *
x . x . . x4o ♦ 16 |  8  8 16 |  4  8  8 0 4 |  4 0 2 0 2 | * N
```

```x∞o x∞o x4o4x   (N → ∞)

. . . . . . . | 4N ♦  2  2  2  2 |  4  4  4  4  4 1  2 1 |  8  8 2  4 2 2  4 2 | 4  8 4
--------------+----+-------------+-----------------------+---------------------+-------
x . . . . . . |  2 | 4N  *  *  * ♦  2  2  2  0  0 0  0 0 |  4  4 1  2 1 0  0 0 | 2  4 2
. . x . . . . |  2 |  * 4N  *  * ♦  2  0  0  2  2 0  0 0 |  4  4 0  0 0 1  2 1 | 2  4 2
. . . . x . . |  2 |  *  * 4N  * ♦  0  2  0  2  0 1  1 0 |  4  0 2  2 0 2  2 0 | 4  4 0
. . . . . . x |  2 |  *  *  * 4N ♦  0  0  2  0  2 0  1 1 |  0  4 0  2 2 0  2 2 | 0  4 4
--------------+----+-------------+-----------------------+---------------------+-------
x . x . . . . |  4 |  2  2  0  0 | 4N  *  *  *  * *  * * |  2  2 0  0 0 0  0 0 | 1  2 1
x . . . x . . |  4 |  2  0  2  0 |  * 4N  *  *  * *  * * |  2  0 1  1 0 0  0 0 | 2  2 0
x . . . . . x |  4 |  2  0  0  2 |  *  * 4N  *  * *  * * |  0  2 0  1 1 0  0 0 | 0  2 2
. . x . x . . |  4 |  0  2  2  0 |  *  *  * 4N  * *  * * |  2  0 0  0 0 1  1 0 | 2  2 0
. . x . . . x |  4 |  0  2  0  2 |  *  *  *  * 4N *  * * |  0  2 0  0 0 0  1 1 | 0  2 2
. . . . x4o . |  4 |  0  0  4  0 |  *  *  *  *  * N  * * |  0  0 2  0 0 2  0 0 | 4  0 0
. . . . x . x |  4 |  0  0  2  2 |  *  *  *  *  * * 2N * |  0  0 0  2 0 0  2 0 | 0  4 0
. . . . . o4x |  4 |  0  0  0  4 |  *  *  *  *  * *  * N |  0  0 0  0 2 0  0 2 | 0  0 4
--------------+----+-------------+-----------------------+---------------------+-------
x . x . x . . ♦  8 |  4  4  4  0 |  2  2  0  2  0 0  0 0 | 4N  * *  * * *  * * | 1  1 0
x . x . . . x ♦  8 |  4  4  0  4 |  2  0  2  0  2 0  0 0 |  * 4N *  * * *  * * | 0  1 1
x . . . x4o . ♦  8 |  4  0  8  0 |  0  4  0  0  0 2  0 0 |  *  * N  * * *  * * | 2  0 0
x . . . x . x ♦  8 |  4  0  4  4 |  0  2  2  0  0 0  2 0 |  *  * * 2N * *  * * | 0  2 0
x . . . . o4x ♦  8 |  4  0  0  8 |  0  0  4  0  0 0  0 2 |  *  * *  * N *  * * | 0  0 2
. . x . x4o . ♦  8 |  0  4  8  0 |  0  0  0  4  0 2  0 0 |  *  * *  * * N  * * | 2  0 0
. . x . x . x ♦  8 |  0  4  4  4 |  0  0  0  2  2 0  2 0 |  *  * *  * * * 2N * | 0  2 0
. . x . . o4x ♦  8 |  0  4  0  8 |  0  0  0  0  4 0  0 2 |  *  * *  * * *  * N | 0  0 2
--------------+----+-------------+-----------------------+---------------------+-------
x . x . x4o . ♦ 16 |  8  8 16  0 |  4  8  0  8  0 4  0 0 |  4  0 2  0 0 2  0 0 | N  * *
x . x . x . x ♦ 16 |  8  8  8  8 |  4  4  4  4  4 0  4 0 |  2  2 0  2 0 0  2 0 | * 2N *
x . x . . o4x ♦ 16 |  8  8  0 16 |  4  0  8  0  8 0  0 4 |  0  4 0  0 2 0  0 2 | *  * N
```

```x∞x x∞o x4o4o

...
```

```x∞x x∞o o4x4o

...
```

```x∞x x∞x x4o4o

...
```

```x∞x x∞x o4x4o

...
```

```x∞x x∞o x4o4x

...
```

```x∞x x∞x x4o4x

...
```

```x∞o x∞o x∞o x∞o

...
```

```x∞x x∞o x∞o x∞o

...
```

```x∞x x∞x x∞o x∞o

...
```

```x∞x x∞x x∞x x∞o

...
```

```x∞x x∞x x∞x x∞x

...
```