Acronym hext (alt.: trat gytrat)
Name hexadecachoric tetracomb,
demitesseractic tetracomb,
Delone complex of body-centered tesseractic lattice,
Gosset polytope 11,1,1,
trat gyrotratism
Lace city
in approx. ASCII-art
C       C     :		where:
    B       B :		A = x3o3o3*a (trat)
A       A     :		B = o3x3o3*a (gyro trat)
    C       C :		C = o3o3x3*a (alt. gyro trat)
B       B     :
    A       A :
. . . . . . . .		(finite repetition unit only)
Vertex layers
(first ones only)
LayerSymmetrySubsymmetries
 o3o3o4o3oo3o3o4o .. o3o4o3o
1x3o3o4o3ox3o3o4o .
hypercell first
. o3o4o3o
vertex first
2o3o3x4o .. x3o4o3o
vertex figure
3x3x3o4o .. o3o4o3q
4.... o3x4o3o
......
Coordinates
    1. (i, j, k, l)                                    i.e. all integer touples (inscribed test) and
    2. (i+1/2, j+1/2, k+1/2, l+1/2)       i.e. all half-integer touples (its body centers, a shifted test)
  • or just   (i/sqrt(2), j/sqrt(2), k/sqrt(2), l/sqrt(2))           for integers i,j,k,l with i+j+k+l even (as being the hemiation of test)
Dual icot
Confer
related tesselations:
Delone complex of primitive tesseractic lattice   Voronoi complex of primitive tesseractic lattice   Voronoi complex of bct lattice  
blend-component:
tratgyt  
ambification:
icot  
general polytopal classes:
noble polytopes   partial Stott expansions   Coxeter-Elte-Gosset polytopes  
External
links
wikipedia   polytopewiki  

This euclidean honeycomb uses complete dissecting hyperplanes, which are infinite lace tower stacks of trataps. Thereby it can be dissectet into triangular needles, tratgyts, arranged along an orthogonal trat. This is how hext could be understood to be considered as "trat gytrat".


Incidence matrix according to Dynkin symbol

x3o3o4o3o   (N → ∞)

. . . . . | N   24 |  96 |  96 | 24
----------+---+-----+-----+-----+---
x . . . . | 2 | 12N    8 |  12 |  6
----------+---+-----+-----+-----+---
x3o . . . | 3 |   3 | 32N |   3 |  3
----------+---+-----+-----+-----+---
x3o3o . .  4 |   6 |   4 | 24N |  2
----------+---+-----+-----+-----+---
x3o3o4o .  8 |  24 |  32 |  16 | 3N

x3o3o *b3o4o   (N → ∞)

. . .    . . | N   24 |  96 | 32  64 | 16 8
-------------+---+-----+-----+--------+-----
x . .    . . | 2 | 12N    8 |  4   8 |  4 2
-------------+---+-----+-----+--------+-----
x3o .    . . | 3 |   3 | 32N |  1   2 |  2 1
-------------+---+-----+-----+--------+-----
x3o3o    . .  4 |   6 |   4 | 8N   * |  2 0
x3o . *b3o .  4 |   6 |   4 |  * 16N |  1 1
-------------+---+-----+-----+--------+-----
x3o3o *b3o .  8 |  24 |  32 |  8   8 | 2N *
x3o . *b3o4o  8 |  24 |  32 |  0  16 |  * N

x3o3o *b3o *b3o   (N → ∞)

. . .    .    . | N   24 |  96 | 32 32 32 | 8 8 8
----------------+---+-----+-----+----------+------
x . .    .    . | 2 | 12N    8 |  4  4  4 | 2 2 2
----------------+---+-----+-----+----------+------
x3o .    .    . | 3 |   3 | 32N |  1  1  1 | 1 1 1
----------------+---+-----+-----+----------+------
x3o3o    .    .  4 |   6 |   4 | 8N  *  * | 1 1 0
x3o . *b3o    .  4 |   6 |   4 |  * 8N  * | 1 0 1
x3o .    . *b3o  4 |   6 |   4 |  *  * 8N | 0 1 1
----------------+---+-----+-----+----------+------
x3o3o *b3o    .  8 |  24 |  32 |  8  8  0 | N * *
x3o3o    . *b3o  8 |  24 |  32 |  8  0  8 | * N *
x3o . *b3o *b3o  8 |  24 |  32 |  0  8  8 | * * N

s4o3o3o4o   (N → ∞)

demi( . . . . . ) | N   24 |  96 | 32  64 | 16 8
------------------+---+-----+-----+--------+-----
      s4o . . .   | 2 | 12N    8 |  4   8 |  4 2
------------------+---+-----+-----+--------+-----
sefa( s4o3o . . ) | 3 |   3 | 32N |  1   2 |  2 1
------------------+---+-----+-----+--------+-----
      s4o3o . .    4 |   6 |   4 | 8N   * |  2 0
sefa( s4o3o3o . )  4 |   6 |   4 |  * 16N |  1 1
------------------+---+-----+-----+--------+-----
      s4o3o3o .    8 |  24 |  32 |  8   8 | 2N *
sefa( s4o3o3o4o )  8 |  24 |  32 |  0  16 |  * N

starting figure: x4o3o3o4o

s4o3o3o4s   (N → ∞)

demi( . . . . . ) | 8N    6  12   6 |  12  36  36  12 |  4  12  12  4  4  16  24  16  4 | 1  4  6  4 1  8
------------------+----+-------------+-----------------+---------------------------------+----------------
      s4o . . .   |  2 | 24N   *   *    4   4   0   0 |  2   2   0  0  2   4   2   0  0 | 1  2  1  0 0  2
      s . 2 . s   |  2 |   * 48N   *    0   4   4   0 |  0   2   2  0  0   2   4   2  0 | 0  1  2  1 0  2
      . . . o4s   |  2 |   *   * 24N    0   0   4   4 |  0   0   2  2  0   0   2   4  2 | 0  0  1  2 1  2
------------------+----+-------------+-----------------+---------------------------------+----------------
sefa( s4o3o . . ) |  3 |   3   0   0 | 32N   *   *   * |  1   0   0  0  1   1   0   0  0 | 1  1  0  0 0  1
sefa( s4o . 2 s ) |  3 |   1   2   0 |   * 96N   *   * |  0   1   0  0  0   1   1   0  0 | 0  1  1  0 0  1
sefa( s 2 . o4s ) |  3 |   0   2   1 |   *   * 96N   * |  0   0   1  0  0   0   1   1  0 | 0  0  1  1 0  1
sefa( . . o3o4s ) |  3 |   0   0   3 |   *   *   * 32N |  0   0   0  1  0   0   0   1  1 | 0  0  0  1 1  1
------------------+----+-------------+-----------------+---------------------------------+----------------
      s4o3o . .     4 |   6   0   0 |   4   0   0   0 | 8N   *   *  *  *   *   *   *  * | 1  1  0  0 0  0
      s4o . 2 s     4 |   2   4   0 |   0   4   0   0 |  * 24N   *  *  *   *   *   *  * | 0  1  1  0 0  0
      s 2 . o4s     4 |   0   4   2 |   0   0   4   0 |  *   * 24N  *  *   *   *   *  * | 0  0  1  1 0  0
      . . o3o4s     4 |   0   0   6 |   0   0   0   4 |  *   *   * 8N  *   *   *   *  * | 0  0  0  1 1  0
sefa( s4o3o3o . )   4 |   6   0   0 |   4   0   0   0 |  *   *   *  * 8N   *   *   *  * | 1  0  0  0 0  1
sefa( s4o3o 2 s )   4 |   3   3   0 |   1   3   0   0 |  *   *   *  *  * 32N   *   *  * | 0  1  0  0 0  1
sefa( s4o 2 o4s )   4 |   1   4   1 |   0   2   2   0 |  *   *   *  *  *   * 48N   *  * | 0  0  1  0 0  1
sefa( s 2 o3o4s )   4 |   0   3   3 |   0   0   3   1 |  *   *   *  *  *   *   * 32N  * | 0  0  0  1 0  1
sefa( . o3o3o4s )   4 |   0   0   6 |   0   0   0   4 |  *   *   *  *  *   *   *   * 8N | 0  0  0  0 1  1
------------------+----+-------------+-----------------+---------------------------------+----------------
      s4o3o3o .     8 |  24   0   0 |  32   0   0   0 |  8   0   0  0  8   0   0   0  0 | N  *  *  * *  *
      s4o3o 2 s     8 |  12  12   0 |   8  24   0   0 |  2   6   0  0  0   8   0   0  0 | * 4N  *  * *  *
      s4o 2 o4s     8 |   4  16   4 |   0  16  16   0 |  0   4   4  0  0   0   8   0  0 | *  * 6N  * *  *
      s 2 o3o4s     8 |   0  12  12 |   0   0  24   8 |  0   0   6  2  0   0   0   8  0 | *  *  * 4N *  *
      . o3o3o4s     8 |   0   0  24 |   0   0   0  32 |  0   0   0  8  0   0   0   0  8 | *  *  *  * N  *
sefa( s4o3o3o4s )   8 |   6  12   6 |   4  12  12   4 |  0   0   0  0  1   4   6   4  1 | *  *  *  * * 8N

starting figure: x4o3o3o4x

:xoo:3:oxo:3:oox:3*a&#x   (N → ∞)   → pw. heights = sqrt(2/3) = 0.816497

 o.. 3 o.. 3 o.. 3*a     & | N   6 18 |  6  54  36 | 24  72 | 24
---------------------------+---+-------+------------+--------+---
 x..   ...   ...         & | 2 | 3N  *   2   6   0 |  6   6 |  6
 oo. 3 oo. 3 oo. 3*a     & | 2 |  * 9N   0   4   4 |  2  10 |  6
---------------------------+---+-------+------------+--------+---
 x.. 3 o..   ...         & | 3 |  3  0 | 2N   *   * |  3   0 |  3
 xo.   ...   ...     &#x & | 3 |  1  2 |  * 18N   * |  1   2 |  3
 ooo 3 ooo 3 ooo 3*a &#x & | 3 |  0  3 |  *   * 12N |  0   3 |  3
---------------------------+---+-------+------------+--------+---
 xo.   ...   oo. 3*a &#x &  4 |  3  3 |  1   3   0 | 6N   * |  2
 xoo   ...   ...     &#x &  4 |  1  5 |  0   2   2 |  * 18N |  2
---------------------------+---+-------+------------+--------+---
:xoo:3:oxo:  ...     &#x &  8 |  6 18 |  2  18  12 |  4  12 | 3N

© 2004-2026
top of page