| Acronym | hext (alt.: trat gytrat) | |||||||||||||||||||||||
| Name |
hexadecachoric tetracomb, demitesseractic tetracomb, Delone complex of body-centered tesseractic lattice, Gosset polytope 11,1,1, trat gyrotratism | |||||||||||||||||||||||
|
Lace city in approx. ASCII-art |
C C : where:
B B : A = x3o3o3*a (trat)
A A : B = o3x3o3*a (gyro trat)
C C : C = o3o3x3*a (alt. gyro trat)
B B :
A A :
. . . . . . . . (finite repetition unit only)
| |||||||||||||||||||||||
|
Vertex layers
(first ones only) |
| |||||||||||||||||||||||
| Coordinates | ||||||||||||||||||||||||
| Dual | icot | |||||||||||||||||||||||
| Confer |
| |||||||||||||||||||||||
|
External links |
| |||||||||||||||||||||||
This euclidean honeycomb uses complete dissecting hyperplanes, which are infinite lace tower stacks of trataps. Thereby it can be dissectet into triangular needles, tratgyts, arranged along an orthogonal trat. This is how hext could be understood to be considered as "trat gytrat".
Incidence matrix according to Dynkin symbol
x3o3o4o3o (N → ∞) . . . . . | N ♦ 24 | 96 | 96 | 24 ----------+---+-----+-----+-----+--- x . . . . | 2 | 12N ♦ 8 | 12 | 6 ----------+---+-----+-----+-----+--- x3o . . . | 3 | 3 | 32N | 3 | 3 ----------+---+-----+-----+-----+--- x3o3o . . ♦ 4 | 6 | 4 | 24N | 2 ----------+---+-----+-----+-----+--- x3o3o4o . ♦ 8 | 24 | 32 | 16 | 3N
x3o3o *b3o4o (N → ∞) . . . . . | N ♦ 24 | 96 | 32 64 | 16 8 -------------+---+-----+-----+--------+----- x . . . . | 2 | 12N ♦ 8 | 4 8 | 4 2 -------------+---+-----+-----+--------+----- x3o . . . | 3 | 3 | 32N | 1 2 | 2 1 -------------+---+-----+-----+--------+----- x3o3o . . ♦ 4 | 6 | 4 | 8N * | 2 0 x3o . *b3o . ♦ 4 | 6 | 4 | * 16N | 1 1 -------------+---+-----+-----+--------+----- x3o3o *b3o . ♦ 8 | 24 | 32 | 8 8 | 2N * x3o . *b3o4o ♦ 8 | 24 | 32 | 0 16 | * N
x3o3o *b3o *b3o (N → ∞) . . . . . | N ♦ 24 | 96 | 32 32 32 | 8 8 8 ----------------+---+-----+-----+----------+------ x . . . . | 2 | 12N ♦ 8 | 4 4 4 | 2 2 2 ----------------+---+-----+-----+----------+------ x3o . . . | 3 | 3 | 32N | 1 1 1 | 1 1 1 ----------------+---+-----+-----+----------+------ x3o3o . . ♦ 4 | 6 | 4 | 8N * * | 1 1 0 x3o . *b3o . ♦ 4 | 6 | 4 | * 8N * | 1 0 1 x3o . . *b3o ♦ 4 | 6 | 4 | * * 8N | 0 1 1 ----------------+---+-----+-----+----------+------ x3o3o *b3o . ♦ 8 | 24 | 32 | 8 8 0 | N * * x3o3o . *b3o ♦ 8 | 24 | 32 | 8 0 8 | * N * x3o . *b3o *b3o ♦ 8 | 24 | 32 | 0 8 8 | * * N
s4o3o3o4o (N → ∞)
demi( . . . . . ) | N ♦ 24 | 96 | 32 64 | 16 8
------------------+---+-----+-----+--------+-----
s4o . . . | 2 | 12N ♦ 8 | 4 8 | 4 2
------------------+---+-----+-----+--------+-----
sefa( s4o3o . . ) | 3 | 3 | 32N | 1 2 | 2 1
------------------+---+-----+-----+--------+-----
s4o3o . . ♦ 4 | 6 | 4 | 8N * | 2 0
sefa( s4o3o3o . ) ♦ 4 | 6 | 4 | * 16N | 1 1
------------------+---+-----+-----+--------+-----
s4o3o3o . ♦ 8 | 24 | 32 | 8 8 | 2N *
sefa( s4o3o3o4o ) ♦ 8 | 24 | 32 | 0 16 | * N
starting figure: x4o3o3o4o
s4o3o3o4s (N → ∞)
demi( . . . . . ) | 8N ♦ 6 12 6 | 12 36 36 12 | 4 12 12 4 4 16 24 16 4 | 1 4 6 4 1 8
------------------+----+-------------+-----------------+---------------------------------+----------------
s4o . . . | 2 | 24N * * ♦ 4 4 0 0 | 2 2 0 0 2 4 2 0 0 | 1 2 1 0 0 2
s . 2 . s | 2 | * 48N * ♦ 0 4 4 0 | 0 2 2 0 0 2 4 2 0 | 0 1 2 1 0 2
. . . o4s | 2 | * * 24N ♦ 0 0 4 4 | 0 0 2 2 0 0 2 4 2 | 0 0 1 2 1 2
------------------+----+-------------+-----------------+---------------------------------+----------------
sefa( s4o3o . . ) | 3 | 3 0 0 | 32N * * * | 1 0 0 0 1 1 0 0 0 | 1 1 0 0 0 1
sefa( s4o . 2 s ) | 3 | 1 2 0 | * 96N * * | 0 1 0 0 0 1 1 0 0 | 0 1 1 0 0 1
sefa( s 2 . o4s ) | 3 | 0 2 1 | * * 96N * | 0 0 1 0 0 0 1 1 0 | 0 0 1 1 0 1
sefa( . . o3o4s ) | 3 | 0 0 3 | * * * 32N | 0 0 0 1 0 0 0 1 1 | 0 0 0 1 1 1
------------------+----+-------------+-----------------+---------------------------------+----------------
s4o3o . . ♦ 4 | 6 0 0 | 4 0 0 0 | 8N * * * * * * * * | 1 1 0 0 0 0
s4o . 2 s ♦ 4 | 2 4 0 | 0 4 0 0 | * 24N * * * * * * * | 0 1 1 0 0 0
s 2 . o4s ♦ 4 | 0 4 2 | 0 0 4 0 | * * 24N * * * * * * | 0 0 1 1 0 0
. . o3o4s ♦ 4 | 0 0 6 | 0 0 0 4 | * * * 8N * * * * * | 0 0 0 1 1 0
sefa( s4o3o3o . ) ♦ 4 | 6 0 0 | 4 0 0 0 | * * * * 8N * * * * | 1 0 0 0 0 1
sefa( s4o3o 2 s ) ♦ 4 | 3 3 0 | 1 3 0 0 | * * * * * 32N * * * | 0 1 0 0 0 1
sefa( s4o 2 o4s ) ♦ 4 | 1 4 1 | 0 2 2 0 | * * * * * * 48N * * | 0 0 1 0 0 1
sefa( s 2 o3o4s ) ♦ 4 | 0 3 3 | 0 0 3 1 | * * * * * * * 32N * | 0 0 0 1 0 1
sefa( . o3o3o4s ) ♦ 4 | 0 0 6 | 0 0 0 4 | * * * * * * * * 8N | 0 0 0 0 1 1
------------------+----+-------------+-----------------+---------------------------------+----------------
s4o3o3o . ♦ 8 | 24 0 0 | 32 0 0 0 | 8 0 0 0 8 0 0 0 0 | N * * * * *
s4o3o 2 s ♦ 8 | 12 12 0 | 8 24 0 0 | 2 6 0 0 0 8 0 0 0 | * 4N * * * *
s4o 2 o4s ♦ 8 | 4 16 4 | 0 16 16 0 | 0 4 4 0 0 0 8 0 0 | * * 6N * * *
s 2 o3o4s ♦ 8 | 0 12 12 | 0 0 24 8 | 0 0 6 2 0 0 0 8 0 | * * * 4N * *
. o3o3o4s ♦ 8 | 0 0 24 | 0 0 0 32 | 0 0 0 8 0 0 0 0 8 | * * * * N *
sefa( s4o3o3o4s ) ♦ 8 | 6 12 6 | 4 12 12 4 | 0 0 0 0 1 4 6 4 1 | * * * * * 8N
starting figure: x4o3o3o4x
:xoo:3:oxo:3:oox:3*a&#x (N → ∞) → pw. heights = sqrt(2/3) = 0.816497 o.. 3 o.. 3 o.. 3*a & | N ♦ 6 18 | 6 54 36 | 24 72 | 24 ---------------------------+---+-------+------------+--------+--- x.. ... ... & | 2 | 3N * ♦ 2 6 0 | 6 6 | 6 oo. 3 oo. 3 oo. 3*a & | 2 | * 9N ♦ 0 4 4 | 2 10 | 6 ---------------------------+---+-------+------------+--------+--- x.. 3 o.. ... & | 3 | 3 0 | 2N * * | 3 0 | 3 xo. ... ... &#x & | 3 | 1 2 | * 18N * | 1 2 | 3 ooo 3 ooo 3 ooo 3*a &#x & | 3 | 0 3 | * * 12N | 0 3 | 3 ---------------------------+---+-------+------------+--------+--- xo. ... oo. 3*a &#x & ♦ 4 | 3 3 | 1 3 0 | 6N * | 2 xoo ... ... &#x & ♦ 4 | 1 5 | 0 2 2 | * 18N | 2 ---------------------------+---+-------+------------+--------+--- :xoo:3:oxo: ... &#x & ♦ 8 | 6 18 | 2 18 12 | 4 12 | 3N
© 2004-2026 | top of page |