Acronym ...
Name x3o3β4x (?)
Circumradius ...

No uniform realisation is possible.


Incidence matrix according to Dynkin symbol

x3o3β4x

both( . . . . ) | 192 |   2  1   2   2 |  1  2  1  2  2  2  2 |  1  1  2 1  2
----------------+-----+----------------+----------------------+--------------
both( x . . . ) |   2 | 192  *   *   * |  1  1  0  0  1  1  0 |  1  1  1 0  1
both( . . . x ) |   2 |   * 96   *   * |  0  2  0  2  0  0  0 |  1  0  2 1  0
sefa( . o3β . ) |   2 |   *  * 192   * |  0  0  1  0  1  0  1 |  0  1  0 1  1
sefa( . . s4x ) |   2 |   *  *   * 192 |  0  0  0  1  0  1  1 |  0  0  1 1  1
----------------+-----+----------------+----------------------+--------------
both( x3o . . ) |   3 |   3  0   0   0 | 64  *  *  *  *  *  * |  1  1  0 0  0
both( x . . x ) |   4 |   2  2   0   0 |  * 96  *  *  *  *  * |  1  0  1 0  0
      . o3β .      3 |   0  0   3   0 |  *  * 64  *  *  *  * |  0  1  0 1  0
both( . . s4x )    4 |   0  2   0   2 |  *  *  * 96  *  *  * |  0  0  1 1  0
sefa( x3o3β . ) |   6 |   3  0   3   0 |  *  *  *  * 64  *  * |  0  1  0 0  1
sefa( x 2 s4x ) |   4 |   2  0   0   2 |  *  *  *  *  * 96  * |  0  0  1 0  1
sefa( . o3β4x ) |   4 |   0  0   2   2 |  *  *  *  *  *  * 96 |  0  0  0 1  1
----------------+-----+----------------+----------------------+--------------
both( x3o . x )    6 |   6  3   0   0 |  2  3  0  0  0  0  0 | 32  *  * *  *
      x3o3β .     12 |  12  0  12   0 |  4  0  4  0  4  0  0 |  * 16  * *  *
both( x 2 s4x )    8 |   4  4   0   4 |  0  2  0  2  0  2  0 |  *  * 48 *  *
      . o3β4x     24 |   0 12  24  24 |  0  0  8 12  0  0 12 |  *  *  * 8  *
sefa( x3o3β4x )   12 |   6  0   6   6 |  0  0  0  0  2  3  3 |  *  *  * * 32

starting figure: x3o3x4x

© 2004-2021
top of page