Acronym n/d-p
TOCID symbol (n/d)P
Name n/d-prism,
n-prism with winding number d

` © ©`
Vertex figure [42,n/d]
General of army if d=1:   is itself convex
if gcd(n,d)=k:   use a (stretched) m-p for its general (with integral m=n/k)
Colonel of regiment (is itself locally convex)
Especially
3/d 4/d 5/d 6/d 7/d 8/d 9/d 10/d 12/d {n/d}-p trip cube pip hip hep op ep dip twip stip 2trip * ship 2cube * step 2pip * 2hip* giship stop 3trip * stiddip 3cube * gistep 2stip * 4trip *
*: Grünbaumian
Confer
special pyramids:
n-p (d=1)
Grünbaumian relatives:
2n/2-p
variations:
(see within files according to individual n/d)
External

Incidence matrix according to Dynkin symbol

```x xn/do (n>2,n/2>d>1)

. .   . | 2n | 1  2 | 2 1
--------+----+------+----
x .   . |  2 | n  * | 2 0
. x   . |  2 | * 2n | 1 1
--------+----+------+----
x x   . |  4 | 2  2 | n *
. xn/do |  n | 0  n | * 2
```

```x2sn/ds   (n>2,n/2>d>1)

demi( . .   . ) | 2n | 1  2 | 1 2
----------------+----+------+----
demi( x .   . ) |  2 | n  * | 0 2
sefa( . sn/ds ) |  2 | * 2n | 1 1
----------------+----+------+----
. sn/ds   ♦  n | 0  n | 2 *
sefa( x2sn/ds ) |  4 | 2  2 | * n
```

```x2s2n/do   (n>2,n/2>d>1)

demi( . .    . ) | 2n | 1  2 | 1 2
-----------------+----+------+----
demi( x .    . ) |  2 | n  * | 0 2
sefa( . s2n/do ) |  2 | * 2n | 1 1
-----------------+----+------+----
. s2n/do   ♦  n | 0  n | 2 *
sefa( x2s2n/do ) |  4 | 2  2 | * n
```

```xxn/doo&#x   (n>2,n/2>d>1)   → height = 1
({n/d} || {n/d})

o.n/do.    | n * | 2 1 0 | 1 2 0
.on/d.o    | * n | 0 1 2 | 0 2 1
-----------+-----+-------+------
x.   ..    | 2 0 | n * * | 1 1 0
oon/doo&#x | 1 1 | * n * | 0 2 0
.x   ..    | 0 2 | * * n | 0 1 1
-----------+-----+-------+------
x.n/do.    | n 0 | n 0 0 | 1 * *
xx   ..&#x | 2 2 | 1 2 1 | * n *
.xn/d.o    | 0 n | 0 0 n | * * 1
```