Acronym capt
Name celliprismated triacontiditeron,
steritruncated penteract
Circumradius sqrt[19+10 sqrt(2)]/2 = 2.878460
Vertex figure
 ©
Coordinates (1+2 sqrt(2), 1+sqrt(2), 1+sqrt(2), 1+sqrt(2), 1)/2   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets duhd siphado spid tat tepe ticcup todip
sorcpit 32100108000
capt 003210804080
& others)
Face vector 640, 2240, 2960, 1600, 242
Confer
general polytopal classes:
Wythoffian polytera  
External
links
wikipedia   polytopewiki  

As abstract polytope capt is isomorphic to quacpot, thereby replacing octagons by octagrams, resp. tic by quith and op by stop, resp. tat by quitit, ticcup by quithip, and todip by tistodip.


Incidence matrix according to Dynkin symbol

x3o3o3x4x

. . . . . | 640 |   3   3   1 |   3   6   3   3   3 |   1   3   3   3   6   1  3 |  1  1  3  3  1
----------+-----+-------------+---------------------+----------------------------+---------------
x . . . . |   2 | 960   *   * |   2   2   1   0   0 |   1   2   2   1   2   0  0 |  1  1  2  1  0
. . . x . |   2 |   * 960   * |   0   2   0   2   1 |   0   1   0   2   2   1  2 |  1  0  1  2  1
. . . . x |   2 |   *   * 320 |   0   0   3   0   3 |   0   0   3   0   6   0  3 |  0  1  3  3  1
----------+-----+-------------+---------------------+----------------------------+---------------
x3o . . . |   3 |   3   0   0 | 640   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0  0
x . . x . |   4 |   2   2   0 |   * 960   *   *   * |   0   1   0   1   1   0  0 |  1  0  1  1  0
x . . . x |   4 |   2   0   2 |   *   * 480   *   * |   0   0   2   0   2   0  0 |  0  1  2  1  0
. . o3x . |   3 |   0   3   0 |   *   *   * 640   * |   0   0   0   1   0   1  1 |  1  0  0  1  1
. . . x4x |   8 |   0   4   4 |   *   *   *   * 240 |   0   0   0   0   2   0  2 |  0  0  1  2  1
----------+-----+-------------+---------------------+----------------------------+---------------
x3o3o . .    4 |   6   0   0 |   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0  0
x3o . x .    6 |   6   3   0 |   2   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0  0
x3o . . x    6 |   6   0   3 |   2   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0  0
x . o3x .    6 |   3   6   0 |   0   3   0   2   0 |   *   *   * 320   *   *  * |  1  0  0  1  0
x . . x4x   16 |   8   8   8 |   0   4   4   0   2 |   *   *   *   * 240   *  * |  0  0  1  1  0
. o3o3x .    4 |   0   6   0 |   0   0   0   4   0 |   *   *   *   *   * 160  * |  1  0  0  0  1
. . o3x4x   24 |   0  24  12 |   0   0   0   8   4 |   *   *   *   *   *   * 80 |  0  0  0  1  1
----------+-----+-------------+---------------------+----------------------------+---------------
x3o3o3x .   20 |  30  30   0 |  20  30   0  20   0 |   5  10   0  10   0   5  0 | 32  *  *  *  *
x3o3o . x    8 |  12   0   4 |   8   0   6   0   0 |   2   0   4   0   0   0  0 |  * 80  *  *  *
x3o . x4x   24 |  24  12  12 |   8  12  12   0   3 |   0   4   4   0   3   0  0 |  *  * 80  *  *
x . o3x4x   48 |  24  48  24 |   0  24  12  16  12 |   0   0   0   8   6   0  2 |  *  *  * 40  *
. o3o3x4x   64 |   0  96  32 |   0   0   0  64  24 |   0   0   0   0   0  16  8 |  *  *  *  * 10

snubbed forms: x3o3o3x4s

x3o3/2o3/2x4x

. .   .   . . | 640 |   3   3   1 |   3   6   3   3   3 |   1   3   3   3   6   1  3 |  1  1  3  3  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x .   .   . . |   2 | 960   *   * |   2   2   1   0   0 |   1   2   2   1   2   0  0 |  1  1  2  1  0
. .   .   x . |   2 |   * 960   * |   0   2   0   2   1 |   0   1   0   2   2   1  2 |  1  0  1  2  1
. .   .   . x |   2 |   *   * 320 |   0   0   3   0   3 |   0   0   3   0   6   0  3 |  0  1  3  3  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3o   .   . . |   3 |   3   0   0 | 640   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0  0
x .   .   x . |   4 |   2   2   0 |   * 960   *   *   * |   0   1   0   1   1   0  0 |  1  0  1  1  0
x .   .   . x |   4 |   2   0   2 |   *   * 480   *   * |   0   0   2   0   2   0  0 |  0  1  2  1  0
. .   o3/2x . |   3 |   0   3   0 |   *   *   * 640   * |   0   0   0   1   0   1  1 |  1  0  0  1  1
. .   .   x4x |   8 |   0   4   4 |   *   *   *   * 240 |   0   0   0   0   2   0  2 |  0  0  1  2  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3o3/2o   . .    4 |   6   0   0 |   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0  0
x3o   .   x .    6 |   6   3   0 |   2   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0  0
x3o   .   . x    6 |   6   0   3 |   2   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0  0
x .   o3/2x .    6 |   3   6   0 |   0   3   0   2   0 |   *   *   * 320   *   *  * |  1  0  0  1  0
x .   .   x4x   16 |   8   8   8 |   0   4   4   0   2 |   *   *   *   * 240   *  * |  0  0  1  1  0
. o3/2o3/2x .    4 |   0   6   0 |   0   0   0   4   0 |   *   *   *   *   * 160  * |  1  0  0  0  1
. .   o3/2x4x   24 |   0  24  12 |   0   0   0   8   4 |   *   *   *   *   *   * 80 |  0  0  0  1  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3o3/2o3/2x .   20 |  30  30   0 |  20  30   0  20   0 |   5  10   0  10   0   5  0 | 32  *  *  *  *
x3o3/2o   . x    8 |  12   0   4 |   8   0   6   0   0 |   2   0   4   0   0   0  0 |  * 80  *  *  *
x3o   .   x4x   24 |  24  12  12 |   8  12  12   0   3 |   0   4   4   0   3   0  0 |  *  * 80  *  *
x .   o3/2x4x   48 |  24  48  24 |   0  24  12  16  12 |   0   0   0   8   6   0  2 |  *  *  * 40  *
. o3/2o3/2x4x   64 |   0  96  32 |   0   0   0  64  24 |   0   0   0   0   0  16  8 |  *  *  *  * 10

x3/2o3o3/2x4x

.   . .   . . | 640 |   3   3   1 |   3   6   3   3   3 |   1   3   3   3   6   1  3 |  1  1  3  3  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x   . .   . . |   2 | 960   *   * |   2   2   1   0   0 |   1   2   2   1   2   0  0 |  1  1  2  1  0
.   . .   x . |   2 |   * 960   * |   0   2   0   2   1 |   0   1   0   2   2   1  2 |  1  0  1  2  1
.   . .   . x |   2 |   *   * 320 |   0   0   3   0   3 |   0   0   3   0   6   0  3 |  0  1  3  3  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3/2o .   . . |   3 |   3   0   0 | 640   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0  0
x   . .   x . |   4 |   2   2   0 |   * 960   *   *   * |   0   1   0   1   1   0  0 |  1  0  1  1  0
x   . .   . x |   4 |   2   0   2 |   *   * 480   *   * |   0   0   2   0   2   0  0 |  0  1  2  1  0
.   . o3/2x . |   3 |   0   3   0 |   *   *   * 640   * |   0   0   0   1   0   1  1 |  1  0  0  1  1
.   . .   x4x |   8 |   0   4   4 |   *   *   *   * 240 |   0   0   0   0   2   0  2 |  0  0  1  2  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3/2o3o   . .    4 |   6   0   0 |   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0  0
x3/2o .   x .    6 |   6   3   0 |   2   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0  0
x3/2o .   . x    6 |   6   0   3 |   2   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0  0
x   . o3/2x .    6 |   3   6   0 |   0   3   0   2   0 |   *   *   * 320   *   *  * |  1  0  0  1  0
x   . .   x4x   16 |   8   8   8 |   0   4   4   0   2 |   *   *   *   * 240   *  * |  0  0  1  1  0
.   o3o3/2x .    4 |   0   6   0 |   0   0   0   4   0 |   *   *   *   *   * 160  * |  1  0  0  0  1
.   . o3/2x4x   24 |   0  24  12 |   0   0   0   8   4 |   *   *   *   *   *   * 80 |  0  0  0  1  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3/2o3o3/2x .   20 |  30  30   0 |  20  30   0  20   0 |   5  10   0  10   0   5  0 | 32  *  *  *  *
x3/2o3o   . x    8 |  12   0   4 |   8   0   6   0   0 |   2   0   4   0   0   0  0 |  * 80  *  *  *
x3/2o .   x4x   24 |  24  12  12 |   8  12  12   0   3 |   0   4   4   0   3   0  0 |  *  * 80  *  *
x   . o3/2x4x   48 |  24  48  24 |   0  24  12  16  12 |   0   0   0   8   6   0  2 |  *  *  * 40  *
.   o3o3/2x4x   64 |   0  96  32 |   0   0   0  64  24 |   0   0   0   0   0  16  8 |  *  *  *  * 10

x3/2o3/2o3x4x

.   .   . . . | 640 |   3   3   1 |   3   6   3   3   3 |   1   3   3   3   6   1  3 |  1  1  3  3  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x   .   . . . |   2 | 960   *   * |   2   2   1   0   0 |   1   2   2   1   2   0  0 |  1  1  2  1  0
.   .   . x . |   2 |   * 960   * |   0   2   0   2   1 |   0   1   0   2   2   1  2 |  1  0  1  2  1
.   .   . . x |   2 |   *   * 320 |   0   0   3   0   3 |   0   0   3   0   6   0  3 |  0  1  3  3  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3/2o   . . . |   3 |   3   0   0 | 640   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0  0
x   .   . x . |   4 |   2   2   0 |   * 960   *   *   * |   0   1   0   1   1   0  0 |  1  0  1  1  0
x   .   . . x |   4 |   2   0   2 |   *   * 480   *   * |   0   0   2   0   2   0  0 |  0  1  2  1  0
.   .   o3x . |   3 |   0   3   0 |   *   *   * 640   * |   0   0   0   1   0   1  1 |  1  0  0  1  1
.   .   . x4x |   8 |   0   4   4 |   *   *   *   * 240 |   0   0   0   0   2   0  2 |  0  0  1  2  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3/2o3/2o . .    4 |   6   0   0 |   4   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0  0
x3/2o   . x .    6 |   6   3   0 |   2   3   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0  0
x3/2o   . . x    6 |   6   0   3 |   2   0   3   0   0 |   *   * 320   *   *   *  * |  0  1  1  0  0
x   .   o3x .    6 |   3   6   0 |   0   3   0   2   0 |   *   *   * 320   *   *  * |  1  0  0  1  0
x   .   . x4x   16 |   8   8   8 |   0   4   4   0   2 |   *   *   *   * 240   *  * |  0  0  1  1  0
.   o3/2o3x .    4 |   0   6   0 |   0   0   0   4   0 |   *   *   *   *   * 160  * |  1  0  0  0  1
.   .   o3x4x   24 |   0  24  12 |   0   0   0   8   4 |   *   *   *   *   *   * 80 |  0  0  0  1  1
--------------+-----+-------------+---------------------+----------------------------+---------------
x3/2o3/2o3x .   20 |  30  30   0 |  20  30   0  20   0 |   5  10   0  10   0   5  0 | 32  *  *  *  *
x3/2o3/2o . x    8 |  12   0   4 |   8   0   6   0   0 |   2   0   4   0   0   0  0 |  * 80  *  *  *
x3/2o   . x4x   24 |  24  12  12 |   8  12  12   0   3 |   0   4   4   0   3   0  0 |  *  * 80  *  *
x   .   o3x4x   48 |  24  48  24 |   0  24  12  16  12 |   0   0   0   8   6   0  2 |  *  *  * 40  *
.   o3/2o3x4x   64 |   0  96  32 |   0   0   0  64  24 |   0   0   0   0   0  16  8 |  *  *  *  * 10

© 2004-2025
top of page