Acronym | capt | ||||||||||||||||||||||||
Name |
celliprismated triacontiditeron, steritruncated penteract | ||||||||||||||||||||||||
Circumradius | sqrt[19+10 sqrt(2)]/2 = 2.878460 | ||||||||||||||||||||||||
Vertex figure |
| ||||||||||||||||||||||||
Coordinates | (1+2 sqrt(2), 1+sqrt(2), 1+sqrt(2), 1+sqrt(2), 1)/2 & all permutations, all changes of sign | ||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||||||||
Face vector | 640, 2240, 2960, 1600, 242 | ||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||
External links |
![]() ![]() |
As abstract polytope capt is isomorphic to quacpot, thereby replacing octagons by octagrams, resp. tic by quith and op by stop, resp. tat by quitit, ticcup by quithip, and todip by tistodip.
Incidence matrix according to Dynkin symbol
x3o3o3x4x . . . . . | 640 | 3 3 1 | 3 6 3 3 3 | 1 3 3 3 6 1 3 | 1 1 3 3 1 ----------+-----+-------------+---------------------+----------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 1 0 0 | 1 2 2 1 2 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 1 | 0 1 0 2 2 1 2 | 1 0 1 2 1 . . . . x | 2 | * * 320 | 0 0 3 0 3 | 0 0 3 0 6 0 3 | 0 1 3 3 1 ----------+-----+-------------+---------------------+----------------------------+--------------- x3o . . . | 3 | 3 0 0 | 640 * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * | 0 1 0 1 1 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * | 0 0 2 0 2 0 0 | 0 1 2 1 0 . . o3x . | 3 | 0 3 0 | * * * 640 * | 0 0 0 1 0 1 1 | 1 0 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * 240 | 0 0 0 0 2 0 2 | 0 0 1 2 1 ----------+-----+-------------+---------------------+----------------------------+--------------- x3o3o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 | * 320 * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * * 320 * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 | * * * 320 * * * | 1 0 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * * * 240 * * | 0 0 1 1 0 . o3o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 | * * * * * 160 * | 1 0 0 0 1 . . o3x4x ♦ 24 | 0 24 12 | 0 0 0 8 4 | * * * * * * 80 | 0 0 0 1 1 ----------+-----+-------------+---------------------+----------------------------+--------------- x3o3o3x . ♦ 20 | 30 30 0 | 20 30 0 20 0 | 5 10 0 10 0 5 0 | 32 * * * * x3o3o . x ♦ 8 | 12 0 4 | 8 0 6 0 0 | 2 0 4 0 0 0 0 | * 80 * * * x3o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 3 | 0 4 4 0 3 0 0 | * * 80 * * x . o3x4x ♦ 48 | 24 48 24 | 0 24 12 16 12 | 0 0 0 8 6 0 2 | * * * 40 * . o3o3x4x ♦ 64 | 0 96 32 | 0 0 0 64 24 | 0 0 0 0 0 16 8 | * * * * 10 snubbed forms: x3o3o3x4s
x3o3/2o3/2x4x . . . . . | 640 | 3 3 1 | 3 6 3 3 3 | 1 3 3 3 6 1 3 | 1 1 3 3 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 1 0 0 | 1 2 2 1 2 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 1 | 0 1 0 2 2 1 2 | 1 0 1 2 1 . . . . x | 2 | * * 320 | 0 0 3 0 3 | 0 0 3 0 6 0 3 | 0 1 3 3 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3o . . . | 3 | 3 0 0 | 640 * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * | 0 1 0 1 1 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * | 0 0 2 0 2 0 0 | 0 1 2 1 0 . . o3/2x . | 3 | 0 3 0 | * * * 640 * | 0 0 0 1 0 1 1 | 1 0 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * 240 | 0 0 0 0 2 0 2 | 0 0 1 2 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3o3/2o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 | * 320 * * * * * | 1 0 1 0 0 x3o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * * 320 * * * * | 0 1 1 0 0 x . o3/2x . ♦ 6 | 3 6 0 | 0 3 0 2 0 | * * * 320 * * * | 1 0 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * * * 240 * * | 0 0 1 1 0 . o3/2o3/2x . ♦ 4 | 0 6 0 | 0 0 0 4 0 | * * * * * 160 * | 1 0 0 0 1 . . o3/2x4x ♦ 24 | 0 24 12 | 0 0 0 8 4 | * * * * * * 80 | 0 0 0 1 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3o3/2o3/2x . ♦ 20 | 30 30 0 | 20 30 0 20 0 | 5 10 0 10 0 5 0 | 32 * * * * x3o3/2o . x ♦ 8 | 12 0 4 | 8 0 6 0 0 | 2 0 4 0 0 0 0 | * 80 * * * x3o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 3 | 0 4 4 0 3 0 0 | * * 80 * * x . o3/2x4x ♦ 48 | 24 48 24 | 0 24 12 16 12 | 0 0 0 8 6 0 2 | * * * 40 * . o3/2o3/2x4x ♦ 64 | 0 96 32 | 0 0 0 64 24 | 0 0 0 0 0 16 8 | * * * * 10
x3/2o3o3/2x4x . . . . . | 640 | 3 3 1 | 3 6 3 3 3 | 1 3 3 3 6 1 3 | 1 1 3 3 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 1 0 0 | 1 2 2 1 2 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 1 | 0 1 0 2 2 1 2 | 1 0 1 2 1 . . . . x | 2 | * * 320 | 0 0 3 0 3 | 0 0 3 0 6 0 3 | 0 1 3 3 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3/2o . . . | 3 | 3 0 0 | 640 * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * | 0 1 0 1 1 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * | 0 0 2 0 2 0 0 | 0 1 2 1 0 . . o3/2x . | 3 | 0 3 0 | * * * 640 * | 0 0 0 1 0 1 1 | 1 0 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * 240 | 0 0 0 0 2 0 2 | 0 0 1 2 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3/2o3o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 0 x3/2o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 | * 320 * * * * * | 1 0 1 0 0 x3/2o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * * 320 * * * * | 0 1 1 0 0 x . o3/2x . ♦ 6 | 3 6 0 | 0 3 0 2 0 | * * * 320 * * * | 1 0 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * * * 240 * * | 0 0 1 1 0 . o3o3/2x . ♦ 4 | 0 6 0 | 0 0 0 4 0 | * * * * * 160 * | 1 0 0 0 1 . . o3/2x4x ♦ 24 | 0 24 12 | 0 0 0 8 4 | * * * * * * 80 | 0 0 0 1 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3/2o3o3/2x . ♦ 20 | 30 30 0 | 20 30 0 20 0 | 5 10 0 10 0 5 0 | 32 * * * * x3/2o3o . x ♦ 8 | 12 0 4 | 8 0 6 0 0 | 2 0 4 0 0 0 0 | * 80 * * * x3/2o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 3 | 0 4 4 0 3 0 0 | * * 80 * * x . o3/2x4x ♦ 48 | 24 48 24 | 0 24 12 16 12 | 0 0 0 8 6 0 2 | * * * 40 * . o3o3/2x4x ♦ 64 | 0 96 32 | 0 0 0 64 24 | 0 0 0 0 0 16 8 | * * * * 10
x3/2o3/2o3x4x . . . . . | 640 | 3 3 1 | 3 6 3 3 3 | 1 3 3 3 6 1 3 | 1 1 3 3 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x . . . . | 2 | 960 * * | 2 2 1 0 0 | 1 2 2 1 2 0 0 | 1 1 2 1 0 . . . x . | 2 | * 960 * | 0 2 0 2 1 | 0 1 0 2 2 1 2 | 1 0 1 2 1 . . . . x | 2 | * * 320 | 0 0 3 0 3 | 0 0 3 0 6 0 3 | 0 1 3 3 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3/2o . . . | 3 | 3 0 0 | 640 * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 2 0 | * 960 * * * | 0 1 0 1 1 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 2 | * * 480 * * | 0 0 2 0 2 0 0 | 0 1 2 1 0 . . o3x . | 3 | 0 3 0 | * * * 640 * | 0 0 0 1 0 1 1 | 1 0 0 1 1 . . . x4x | 8 | 0 4 4 | * * * * 240 | 0 0 0 0 2 0 2 | 0 0 1 2 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3/2o3/2o . . ♦ 4 | 6 0 0 | 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 0 x3/2o . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 | * 320 * * * * * | 1 0 1 0 0 x3/2o . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * * 320 * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 | * * * 320 * * * | 1 0 0 1 0 x . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * * * 240 * * | 0 0 1 1 0 . o3/2o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 | * * * * * 160 * | 1 0 0 0 1 . . o3x4x ♦ 24 | 0 24 12 | 0 0 0 8 4 | * * * * * * 80 | 0 0 0 1 1 --------------+-----+-------------+---------------------+----------------------------+--------------- x3/2o3/2o3x . ♦ 20 | 30 30 0 | 20 30 0 20 0 | 5 10 0 10 0 5 0 | 32 * * * * x3/2o3/2o . x ♦ 8 | 12 0 4 | 8 0 6 0 0 | 2 0 4 0 0 0 0 | * 80 * * * x3/2o . x4x ♦ 24 | 24 12 12 | 8 12 12 0 3 | 0 4 4 0 3 0 0 | * * 80 * * x . o3x4x ♦ 48 | 24 48 24 | 0 24 12 16 12 | 0 0 0 8 6 0 2 | * * * 40 * . o3/2o3x4x ♦ 64 | 0 96 32 | 0 0 0 64 24 | 0 0 0 0 0 16 8 | * * * * 10
© 2004-2025 | top of page |