Acronym todip, K-4.59 Name triangle - octagon duoprism,octagon - op wedge Circumradius sqrt[(8+3 sqrt(2))/6] = 1.428440 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles at {3} between trip and trip:   135° at {4} between op and trip:   90° at {8} between op and op:   60° Confer general duoprisms: n,m-dip   2n,m-dip   3,n-dip   8,n-dip   general polytopal classes: segmentochora Externallinks

As abstract polychoron todip is isomorph to tistodip, thereby replacing octagons by octagrams, resp. op by stop.

Incidence matrix according to Dynkin symbol

```x3o x8o

. . . . | 24 |  2  2 | 1  4 1 | 2 2
--------+----+-------+--------+----
x . . . |  2 | 24  * | 1  2 0 | 2 1
. . x . |  2 |  * 24 | 0  2 1 | 1 2
--------+----+-------+--------+----
x3o . . |  3 |  3  0 | 8  * * | 2 0
x . x . |  4 |  2  2 | * 24 * | 1 1
. . x8o |  8 |  0  8 | *  * 3 | 0 2
--------+----+-------+--------+----
x3o x . ♦  6 |  6  3 | 2  3 0 | 8 *
x . x8o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3o x8/7o

. . .   . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x . .   . |  2 | 24  * | 1  2 0 | 2 1
. . x   . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3o .   . |  3 |  3  0 | 8  * * | 2 0
x . x   . |  4 |  2  2 | * 24 * | 1 1
. . x8/7o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3o x   . ♦  6 |  6  3 | 2  3 0 | 8 *
x . x8/7o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3/2o x8o

.   . . . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x   . . . |  2 | 24  * | 1  2 0 | 2 1
.   . x . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3/2o . . |  3 |  3  0 | 8  * * | 2 0
x   . x . |  4 |  2  2 | * 24 * | 1 1
.   . x8o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3/2o x . ♦  6 |  6  3 | 2  3 0 | 8 *
x   . x8o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3/2o x8/7o

.   . .   . | 24 |  2  2 | 1  4 1 | 2 2
------------+----+-------+--------+----
x   . .   . |  2 | 24  * | 1  2 0 | 2 1
.   . x   . |  2 |  * 24 | 0  2 1 | 1 2
------------+----+-------+--------+----
x3/2o .   . |  3 |  3  0 | 8  * * | 2 0
x   . x   . |  4 |  2  2 | * 24 * | 1 1
.   . x8/7o |  8 |  0  8 | *  * 3 | 0 2
------------+----+-------+--------+----
x3/2o x   . ♦  6 |  6  3 | 2  3 0 | 8 *
x   . x8/7o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3o x4x

. . . . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
--------+----+----------+-----------+------
x . . . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
. . x . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
. . . x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
--------+----+----------+-----------+------
x3o . . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x . x . |  4 |  2  2  0 | * 12  * * | 1 0 1
x . . x |  4 |  2  0  2 | *  * 12 * | 0 1 1
. . x4x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
--------+----+----------+-----------+------
x3o x . ♦  6 |  6  3  0 | 2  3  0 0 | 4 * *
x3o . x ♦  6 |  6  0  3 | 2  0  3 0 | * 4 *
x . x4x ♦ 16 |  8  8  8 | 0  4  4 2 | * * 3
```

```x3/2o x4x

.   . . . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
----------+----+----------+-----------+------
x   . . . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
.   . x . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
.   . . x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
----------+----+----------+-----------+------
x3/2o . . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x   . x . |  4 |  2  2  0 | * 12  * * | 1 0 1
x   . . x |  4 |  2  0  2 | *  * 12 * | 0 1 1
.   . x4x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
----------+----+----------+-----------+------
x3/2o x . ♦  6 |  6  3  0 | 2  3  0 0 | 4 * *
x3/2o . x ♦  6 |  6  0  3 | 2  0  3 0 | * 4 *
x   . x4x ♦ 16 |  8  8  8 | 0  4  4 2 | * * 3
```

```ox xx4xx&#x   → height = sqrt(3)/2 = 0.866025

o. o.4o.    | 8  * | 1 1  2 0 0 0 | 1 1 2 2 0 0 0 | 1 1 2 0
.o .o4.o    | * 16 | 0 0  1 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1
------------+------+--------------+---------------+--------
.. x. ..    | 2  0 | 4 *  * * * * | 1 0 2 0 0 0 0 | 1 0 2 0
.. .. x.    | 2  0 | * 4  * * * * | 1 0 0 2 0 0 0 | 0 1 2 0
oo oo4oo&#x | 1  1 | * * 16 * * * | 0 1 1 1 0 0 0 | 1 1 1 0
.x .. ..    | 0  2 | * *  * 8 * * | 0 1 0 0 1 1 0 | 1 1 0 1
.. .x ..    | 0  2 | * *  * * 8 * | 0 0 1 0 1 0 1 | 1 0 1 1
.. .. .x    | 0  2 | * *  * * * 8 | 0 0 0 1 0 1 1 | 0 1 1 1
------------+------+--------------+---------------+--------
.. x.4x.    | 8  0 | 4 4  0 0 0 0 | 1 * * * * * * | 0 0 2 0
ox .. ..&#x | 1  2 | 0 0  2 1 0 0 | * 8 * * * * * | 1 1 0 0
.. xx ..&#x | 2  2 | 1 0  2 0 1 0 | * * 8 * * * * | 1 0 1 0
.. .. xx&#x | 2  2 | 0 1  2 0 0 1 | * * * 8 * * * | 0 1 1 0
.x .x ..    | 0  4 | 0 0  0 2 2 0 | * * * * 4 * * | 1 0 0 1
.x .. .x    | 0  4 | 0 0  0 2 0 2 | * * * * * 4 * | 0 1 0 1
.. .x4.x    | 0  8 | 0 0  0 0 4 4 | * * * * * * 2 | 0 0 1 1
------------+------+--------------+---------------+--------
ox xx ..&#x ♦ 2  4 | 1 0  4 2 2 0 | 0 2 2 0 1 0 0 | 4 * * *
ox .. xx&#x ♦ 2  4 | 0 1  4 2 0 2 | 0 2 0 2 0 1 0 | * 4 * *
.. xx4xx&#x ♦ 8  8 | 4 4  8 0 4 4 | 1 0 4 4 0 0 1 | * * 2 *
.x .x4.x    ♦ 0 16 | 0 0  0 8 8 8 | 0 0 0 0 4 4 2 | * * * 1
```