Acronym tistodip Name triangle - octagram duoprism,octagram - stop wedge Circumradius sqrt[(8-3 sqrt(2))/6] = 0.791345 Dihedral angles at {4} between stop and trip:   90° at {8} between stop and stop:   60° at {3} between trip and trip:   45° Confer general duoprisms: n/d,m/b-dip   3,n-dip   general polytopal classes: segmentochora Externallinks

As abstract polychoron tistodip is isomorph to todip, thereby replacing octagrams by octagons, resp. stop by op.

Incidence matrix according to Dynkin symbol

```x3o x8/3o

. . .   . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x . .   . |  2 | 24  * | 1  2 0 | 2 1
. . x   . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3o .   . |  3 |  3  0 | 8  * * | 2 0
x . x   . |  4 |  2  2 | * 24 * | 1 1
. . x8/3o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3o x   . ♦  6 |  6  3 | 2  3 0 | 8 *
x . x8/3o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3o x8/5o

. . .   . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x . .   . |  2 | 24  * | 1  2 0 | 2 1
. . x   . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3o .   . |  3 |  3  0 | 8  * * | 2 0
x . x   . |  4 |  2  2 | * 24 * | 1 1
. . x8/5o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3o x   . ♦  6 |  6  3 | 2  3 0 | 8 *
x . x8/5o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3/2o x8/3o

.   . .   . | 24 |  2  2 | 1  4 1 | 2 2
------------+----+-------+--------+----
x   . .   . |  2 | 24  * | 1  2 0 | 2 1
.   . x   . |  2 |  * 24 | 0  2 1 | 1 2
------------+----+-------+--------+----
x3/2o .   . |  3 |  3  0 | 8  * * | 2 0
x   . x   . |  4 |  2  2 | * 24 * | 1 1
.   . x8/3o |  8 |  0  8 | *  * 3 | 0 2
------------+----+-------+--------+----
x3/2o x   . ♦  6 |  6  3 | 2  3 0 | 8 *
x   . x8/3o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3/2o x8/5o

.   . .   . | 24 |  2  2 | 1  4 1 | 2 2
------------+----+-------+--------+----
x   . .   . |  2 | 24  * | 1  2 0 | 2 1
.   . x   . |  2 |  * 24 | 0  2 1 | 1 2
------------+----+-------+--------+----
x3/2o .   . |  3 |  3  0 | 8  * * | 2 0
x   . x   . |  4 |  2  2 | * 24 * | 1 1
.   . x8/5o |  8 |  0  8 | *  * 3 | 0 2
------------+----+-------+--------+----
x3/2o x   . ♦  6 |  6  3 | 2  3 0 | 8 *
x   . x8/5o ♦ 16 |  8 16 | 0  8 2 | * 3
```

```x3o x4/3x

. . .   . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
----------+----+----------+-----------+------
x . .   . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
. . x   . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
. . .   x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
----------+----+----------+-----------+------
x3o .   . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x . x   . |  4 |  2  2  0 | * 12  * * | 1 0 1
x . .   x |  4 |  2  0  2 | *  * 12 * | 0 1 1
. . x4/3x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
----------+----+----------+-----------+------
x3o x   . ♦  6 |  6  3  0 | 2  3  0 0 | 4 * *
x3o .   x ♦  6 |  6  0  3 | 2  0  3 0 | * 4 *
x . x4/3x ♦ 16 |  8  8  8 | 0  4  4 2 | * * 3
```

```x3/2o x4/3x

.   . .   . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
------------+----+----------+-----------+------
x   . .   . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
.   . x   . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
.   . .   x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
------------+----+----------+-----------+------
x3/2o .   . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x   . x   . |  4 |  2  2  0 | * 12  * * | 1 0 1
x   . .   x |  4 |  2  0  2 | *  * 12 * | 0 1 1
.   . x4/3x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
------------+----+----------+-----------+------
x3/2o x   . ♦  6 |  6  3  0 | 2  3  0 0 | 4 * *
x3/2o .   x ♦  6 |  6  0  3 | 2  0  3 0 | * 4 *
x   . x4/3x ♦ 16 |  8  8  8 | 0  4  4 2 | * * 3
```