Acronym | cubaquerco |
Name |
cube atop quasirhombicuboctahedron, cubical cap of quasidisprismatotesseractihexadecachoron |
Circumradius | sqrt[(3-sqrt(2))/2] = 0.890446 |
Lace city in approx. ASCII-art |
x4/3o x4/3o -- o3o4/3x (cube) (x4/3x) x4/3o x4/3o (x4/3x) -- x3o4/3x (querco) |
Face vector | 32, 84, 80, 28 |
Confer |
|
As abstract polytope cubaquerco is isomorphic to cubasirco, thereby replacing pseudo octagrams by pseudo octagons, and querco by sirco.
Incidence matrix according to Dynkin symbol
ox3/2oo4xx&#x → height = 1/sqrt(2) = 0.707107
(cube || querco)
o.3/2o.4o. | 8 * | 3 3 0 0 | 3 3 6 0 0 0 | 1 1 3 3 0
.o3/2.o4.o | * 24 | 0 1 2 2 | 0 2 2 1 2 1 | 0 1 2 1 1
--------------+------+-------------+----------------+-----------
.. .. x. | 2 0 | 12 * * * | 2 0 2 0 0 0 | 1 0 1 2 0
oo3/2oo4oo&#x | 1 1 | * 24 * * | 0 2 2 0 0 0 | 0 1 2 1 0
.x .. .. | 0 2 | * * 24 * | 0 1 0 1 1 0 | 0 1 1 0 1
.. .. .x | 0 2 | * * * 24 | 0 0 1 0 1 1 | 0 0 1 1 1
--------------+------+-------------+----------------+-----------
.. o.4x. | 4 0 | 4 0 0 0 | 6 * * * * * | 1 0 0 1 0
ox .. ..&#x | 1 2 | 0 2 1 0 | * 24 * * * * | 0 1 1 0 0
.. .. xx&#x | 2 2 | 1 2 0 1 | * * 24 * * * | 0 0 1 1 0
.x3/2.o .. | 0 3 | 0 0 3 0 | * * * 8 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 2 2 | * * * * 12 * | 0 0 1 0 1
.. .o4.x | 0 4 | 0 0 0 4 | * * * * * 6 | 0 0 0 1 1
--------------+------+-------------+----------------+-----------
o.3/2o.4x. ♦ 8 0 | 12 0 0 0 | 6 0 0 0 0 0 | 1 * * * *
ox3/2oo ..&#x ♦ 1 3 | 0 3 3 0 | 0 3 0 1 0 0 | * 8 * * *
ox .. xx&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 0 1 0 | * * 12 * *
.. oo4xx&#x ♦ 4 4 | 4 4 0 4 | 1 0 4 0 0 1 | * * * 6 *
.x3/2.o4.x ♦ 0 24 | 0 0 24 24 | 0 0 0 8 12 6 | * * * * 1
ox3oo4xx&#x → height = 1/sqrt(2) = 0.707107
(cube || querco)
o.3o.4/3o. | 8 * | 3 3 0 0 | 3 3 6 0 0 0 | 1 1 3 3 0
.o3.o4/3.o | * 24 | 0 1 2 2 | 0 2 2 1 2 1 | 0 1 2 1 1
--------------+------+-------------+----------------+-----------
.. .. x. | 2 0 | 12 * * * | 2 0 2 0 0 0 | 1 0 1 2 0
oo3oo4/3oo&#x | 1 1 | * 24 * * | 0 2 2 0 0 0 | 0 1 2 1 0
.x .. .. | 0 2 | * * 24 * | 0 1 0 1 1 0 | 0 1 1 0 1
.. .. .x | 0 2 | * * * 24 | 0 0 1 0 1 1 | 0 0 1 1 1
--------------+------+-------------+----------------+-----------
.. o.4/3x. | 4 0 | 4 0 0 0 | 6 * * * * * | 1 0 0 1 0
ox .. ..&#x | 1 2 | 0 2 1 0 | * 24 * * * * | 0 1 1 0 0
.. .. xx&#x | 2 2 | 1 2 0 1 | * * 24 * * * | 0 0 1 1 0
.x3.o .. | 0 3 | 0 0 3 0 | * * * 8 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 2 2 | * * * * 12 * | 0 0 1 0 1
.. .o4/3.x | 0 4 | 0 0 0 4 | * * * * * 6 | 0 0 0 1 1
--------------+------+-------------+----------------+-----------
o.3o.4/3x. ♦ 8 0 | 12 0 0 0 | 6 0 0 0 0 0 | 1 * * * *
ox3oo ..&#x ♦ 1 3 | 0 3 3 0 | 0 3 0 1 0 0 | * 8 * * *
ox .. xx&#x ♦ 2 4 | 1 4 2 2 | 0 2 2 0 1 0 | * * 12 * *
.. oo4/3xx&#x ♦ 4 4 | 4 4 0 4 | 1 0 4 0 0 1 | * * * 6 *
.x3.o4/3.x ♦ 0 24 | 0 0 24 24 | 0 0 0 8 12 6 | * * * * 1
© 2004-2025 | top of page |