Acronym biscsrip Name bistratic trip-cap of srip,{3}-diminished small rhombated pentachoron Circumradius sqrt(7/5) = 1.183216 Lace cityin approx. ASCII-art ``` x3o o3x x3o u3o x3x o3x x3x ``` Dihedral angles at {6} between hip and tricu:   arccos(-sqrt(3/8)) = 127.761244° at {3} between oct and trip:   arccos(-sqrt(3/8)) = 127.761244° at {3} between squippy and trip:   arccos(-sqrt[3/8]) = 127.761244° at {4} between co and trip:   arccos(-1/sqrt(6)) = 114.094843° at {4} between hip and squippy:   arccos(-1/sqrt(6)) = 114.094843° at {4} between tricu and trip:   arccos(-1/sqrt(6)) = 114.094843° at {3} between co and oct:   arccos(-1/4) = 104.477512° at {3} between co and squippy:   arccos(-1/4) = 104.477512° at {3} between oct and tricu:   arccos(-1/4) = 104.477512° at {3} between co and co:   arccos(1/4) = 75.522488° at {3} between co and tricu:   arccos(1/4) = 75.522488° at {4} between co and hip:   arccos(1/sqrt(6)) = 65.905157° Confer uniform relative: srip   spid   segmentochora: {3} || hip   related CRFs: bidiminished srip   general polytopal classes: expanded kaleido-facetings   bistratic lace towers

The relation to spid runs as follows: spid in trippy subsymmetry can be given as o(ox)x3x(ox)o x(uo)x&#xt. That will be transformed into x(ou)x3(-x)(o(-x))o x(uo)x&#xt (faceting, same vertex set). Then a Stott expansion wrt. the second node produces this polychoron.

Alternatively it can be obtained as a diminishing of srip: srip in trippy subsymmetry can be given as x(uo)xo x(ou)xx3o(xo)xo&#xt. Then a diminishing wrt. the last vertex level produces this polychoron.

Incidence matrix according to Dynkin symbol

```x(ou)x3o(xo)x x(uo)x&#xt   → both heights = sqrt(5/12) = 0.645497
(trip || pseudo compound of u x3o and u-{3} || hip)

o(..).3o(..). o(..).     | 6 * *  * | 2 1  2 1 0  0  0 0 0 0 | 1 2 2 1 1  2 0 0 0 0 0 0 0 0 | 1 1 2 1 0 0 0
.(o.).3.(o.). .(o.).     | * 6 *  * | 0 0  2 0 2  2  0 0 0 0 | 0 0 1 2 0  2 1 1 2 0 0 0 0 0 | 0 1 1 2 1 0 0
.(.o).3.(.o). .(.o).     | * * 3  * | 0 0  0 2 0  0  4 0 0 0 | 0 0 0 0 1  4 0 0 0 2 2 0 0 0 | 0 0 2 2 0 1 0
.(..)o3.(..)o .(..)o     | * * * 12 | 0 0  0 0 0  1  1 1 1 1 | 0 0 0 0 0  1 0 1 1 1 1 1 1 1 | 0 0 1 1 1 1 1
-------------------------+----------+------------------------+------------------------------+--------------
x(..). .(..). .(..).     | 2 0 0  0 | 6 *  * * *  *  * * * * | 1 1 1 0 0  0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0
.(..). .(..). x(..).     | 2 0 0  0 | * 3  * * *  *  * * * * | 0 2 0 0 1  0 0 0 0 0 0 0 0 0 | 1 0 2 0 0 0 0
o(o.).3o(o.). o(o.).&#x  | 1 1 0  0 | * * 12 * *  *  * * * * | 0 0 1 1 0  1 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0
o(.o).3o(.o). o(.o).&#x  | 1 0 1  0 | * *  * 6 *  *  * * * * | 0 0 0 0 1  2 0 0 0 0 0 0 0 0 | 0 0 2 1 0 0 0
.(..). .(x.). .(..).     | 0 2 0  0 | * *  * * 6  *  * * * * | 0 0 0 1 0  0 1 0 1 0 0 0 0 0 | 0 1 0 1 1 0 0
.(o.)o3.(o.)o .(o.)o&#x  | 0 1 0  1 | * *  * * * 12  * * * * | 0 0 0 0 0  1 0 1 1 0 0 0 0 0 | 0 0 1 1 1 0 0
.(.o)o3.(.o)o .(.o)o&#x  | 0 0 1  1 | * *  * * *  * 12 * * * | 0 0 0 0 0  1 0 0 0 1 1 0 0 0 | 0 0 1 1 0 1 0
.(..)x .(..). .(..).     | 0 0 0  2 | * *  * * *  *  * 6 * * | 0 0 0 0 0  0 0 1 0 0 0 1 1 0 | 0 0 1 0 1 0 1
.(..). .(..)x .(..).     | 0 0 0  2 | * *  * * *  *  * * 6 * | 0 0 0 0 0  0 0 0 1 1 0 1 0 1 | 0 0 0 1 1 1 1
.(..). .(..). .(..)x     | 0 0 0  2 | * *  * * *  *  * * * 6 | 0 0 0 0 0  0 0 0 0 0 1 0 1 1 | 0 0 1 0 0 1 1
-------------------------+----------+------------------------+------------------------------+--------------
x(..).3o(..). .(..).     | 3 0 0  0 | 3 0  0 0 0  0  0 0 0 0 | 2 * * * *  * * * * * * * * * | 1 1 0 0 0 0 0
x(..). .(..). x(..).     | 4 0 0  0 | 2 2  0 0 0  0  0 0 0 0 | * 3 * * *  * * * * * * * * * | 1 0 1 0 0 0 0
x(o.). .(..). .(..).&#x  | 2 1 0  0 | 1 0  2 0 0  0  0 0 0 0 | * * 6 * *  * * * * * * * * * | 0 1 1 0 0 0 0
.(..). o(x.). .(..).&#x  | 1 2 0  0 | 0 0  2 0 1  0  0 0 0 0 | * * * 6 *  * * * * * * * * * | 0 1 0 1 0 0 0
.(..). .(..). x(.o).&#x  | 2 0 1  0 | 0 1  0 2 0  0  0 0 0 0 | * * * * 3  * * * * * * * * * | 0 0 2 0 0 0 0
o(oo)o3o(oo)o o(oo)o&#xt | 1 1 1  1 | 0 0  1 1 0  1  1 0 0 0 | * * * * * 12 * * * * * * * * | 0 0 1 1 0 0 0
.(o.).3.(x.). .(..).     | 0 3 0  0 | 0 0  0 0 3  0  0 0 0 0 | * * * * *  * 2 * * * * * * * | 0 1 0 0 1 0 0
.(o.)x .(..). .(..).&#x  | 0 1 0  2 | 0 0  0 0 0  2  0 1 0 0 | * * * * *  * * 6 * * * * * * | 0 0 1 0 1 0 0
.(..). .(x.)x .(..).&#x  | 0 2 0  2 | 0 0  0 0 1  2  0 0 1 0 | * * * * *  * * * 6 * * * * * | 0 0 0 1 1 0 0
.(..). .(.o)x .(..).&#x  | 0 0 1  2 | 0 0  0 0 0  0  2 0 1 0 | * * * * *  * * * * 6 * * * * | 0 0 0 1 0 1 0
.(..). .(..). .(.o)x&#x  | 0 0 1  2 | 0 0  0 0 0  0  2 0 0 1 | * * * * *  * * * * * 6 * * * | 0 0 1 0 0 1 0
.(..)x3.(..)x .(..).     | 0 0 0  6 | 0 0  0 0 0  0  0 3 3 0 | * * * * *  * * * * * * 2 * * | 0 0 0 0 1 0 1
.(..)x .(..). .(..)x     | 0 0 0  4 | 0 0  0 0 0  0  0 2 0 2 | * * * * *  * * * * * * * 3 * | 0 0 1 0 0 0 1
.(..). .(..)x .(..)x     | 0 0 0  4 | 0 0  0 0 0  0  0 0 2 2 | * * * * *  * * * * * * * * 3 | 0 0 0 0 0 1 1
-------------------------+----------+------------------------+------------------------------+--------------
x(..).3o(..). x(..).     ♦ 6 0 0  0 | 6 3  0 0 0  0  0 0 0 0 | 2 3 0 0 0  0 0 0 0 0 0 0 0 0 | 1 * * * * * *
x(o.).3o(x.). .(..).&#x  ♦ 3 3 0  0 | 3 0  6 0 3  0  0 0 0 0 | 1 0 3 3 0  0 1 0 0 0 0 0 0 0 | * 2 * * * * *
x(ou)x .(..). x(uo)x&#xt ♦ 4 2 2  4 | 2 2  4 4 0  4  4 2 0 2 | 0 1 2 0 2  4 0 2 0 0 2 0 1 0 | * * 3 * * * *
.(..). o(xo)x .(..).&#xt ♦ 1 2 1  2 | 0 0  2 1 1  2  2 0 1 0 | 0 0 0 1 0  2 0 0 1 1 0 0 0 0 | * * * 6 * * *
.(o.)x3.(x.)x .(..).&#x  ♦ 0 3 0  6 | 0 0  0 0 3  6  0 3 3 0 | 0 0 0 0 0  0 1 3 3 0 0 1 0 0 | * * * * 2 * *
.(..). .(.o)x .(.o)x&#x  ♦ 0 0 1  4 | 0 0  0 0 0  0  4 0 2 2 | 0 0 0 0 0  0 0 0 0 2 2 0 0 1 | * * * * * 3 *
.(..)x3.(..)x .(..)x     ♦ 0 0 0 12 | 0 0  0 0 0  0  0 6 6 6 | 0 0 0 0 0  0 0 0 0 0 0 2 3 3 | * * * * * * 1
```