Acronym | gahi, apD |
Name |
grand hecatonicosachoron, aggrandized polydodecahedron |
Cross sections |
|
Circumradius | (1+sqrt(5))/2 = 1.618034 |
Inradius | (1+sqrt(5))/4 = 0.809017 |
Density | 20 |
Coordinates |
|
General of army | ex |
Colonel of regiment | ex |
Dual | gishi |
Dihedral angles | |
Face vector | 120, 720, 720, 120 |
Confer |
|
External links |
![]() ![]() ![]() ![]() |
As abstract polytope gahi is isomorphic to gishi, thereby replacing doe by gissid, resp. replacing pentagonal faces by pentagrammal ones, resp. replacing pentagrammal edge figures each by pentagonal ones, resp. replacing gike vertex figures by ike ones. – As such gahi is a lieutenant.
Both gahi and gishi can be seen as different realizations of the same self-dual regular abstract polychoron {5,3,5|3} = x5o3o5o | x3o (where the suffix denotes the size of the corresponding hole). In fact, the latter occurs here as face of the circumscribing gike.
Incidence matrix according to Dynkin symbol
x5o3o5/2o . . . . | 120 ♦ 12 | 30 | 20 ----------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 ----------+-----+-----+-----+---- x5o . . | 5 | 5 | 720 | 2 ----------+-----+-----+-----+---- x5o3o . ♦ 20 | 30 | 12 | 120 snubbed forms: β5o3o5/2o
x5o3o5/3o . . . . | 120 ♦ 12 | 30 | 20 ----------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 ----------+-----+-----+-----+---- x5o . . | 5 | 5 | 720 | 2 ----------+-----+-----+-----+---- x5o3o . ♦ 20 | 30 | 12 | 120
x5o3/2o5/2o . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- x5o . . | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- x5o3/2o . ♦ 20 | 30 | 12 | 120
x5o3/2o5/3o . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- x5o . . | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- x5o3/2o . ♦ 20 | 30 | 12 | 120
x5/4o3o5/2o . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- x5/4o . . | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- x5/4o3o . ♦ 20 | 30 | 12 | 120
x5/4o3o5/3o . . . . | 120 ♦ 12 | 30 | 20 ------------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 ------------+-----+-----+-----+---- x5/4o . . | 5 | 5 | 720 | 2 ------------+-----+-----+-----+---- x5/4o3o . ♦ 20 | 30 | 12 | 120
x5/4o3/2o5/2o . . . . | 120 ♦ 12 | 30 | 20 --------------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 --------------+-----+-----+-----+---- x5/4o . . | 5 | 5 | 720 | 2 --------------+-----+-----+-----+---- x5/4o3/2o . ♦ 20 | 30 | 12 | 120
x5/4o3/2o5/3o . . . . | 120 ♦ 12 | 30 | 20 --------------+-----+-----+-----+---- x . . . | 2 | 720 | 5 | 5 --------------+-----+-----+-----+---- x5/4o . . | 5 | 5 | 720 | 2 --------------+-----+-----+-----+---- x5/4o3/2o . ♦ 20 | 30 | 12 | 120
© 2004-2025 | top of page |