Acronym gibacadint
Name great biprismatocellidispenteractitriacontaditeron
Circumradius sqrt[17-4 sqrt(2)]/2 = 1.683979
Colonel of regiment gidacadint
Face vector 1920, 6720, 6720, 2160, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki

As abstract polyteron gibacadint is isomorph to sibacadint, thereby replacing octagons by octagrams, resp. op by stop, querco by sirco, and socco by gocco resp. paqrit by prit, hodip by histodip, soccope by goccope, and gikviphado by skiviphado. – As such gibacadint is a lieutenant.


Incidence matrix according to Dynkin symbol

x3x3o3x4x4*c

. . . . .      | 1920 |   1    2    2    2 |   2   2   2   1   2   2   1   1   2 |   1   2   2   1   1   2   1  1   2  1 |  1  1  2  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x . . . .      |    2 | 960    *    *    * |   2   2   2   0   0   0   0   0   0 |   1   2   2   1   1   2   0  0   0  0 |  1  1  2  1  0
. x . . .      |    2 |   * 1920    *    * |   1   0   0   1   1   1   0   0   0 |   1   1   1   0   0   0   1  1   1  0 |  1  1  1  0  1
. . . x .      |    2 |   *    * 1920    * |   0   1   0   0   1   0   1   0   1 |   0   1   0   1   0   1   1  0   1  1 |  1  0  1  1  1
. . . . x      |    2 |   *    *    * 1920 |   0   0   1   0   0   1   0   1   1 |   0   0   1   0   1   1   0  1   1  1 |  0  1  1  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x3x . . .      |    6 |   3    3    0    0 | 640   *   *   *   *   *   *   *   * |   1   1   1   0   0   0   0  0   0  0 |  1  1  1  0  0
x . . x .      |    4 |   2    0    2    0 |   * 960   *   *   *   *   *   *   * |   0   1   0   1   0   1   0  0   0  0 |  1  0  1  1  0
x . . . x      |    4 |   2    0    0    2 |   *   * 960   *   *   *   *   *   * |   0   0   1   0   1   1   0  0   0  0 |  0  1  1  1  0
. x3o . .      |    3 |   0    3    0    0 |   *   *   * 640   *   *   *   *   * |   1   0   0   0   0   0   1  1   0  0 |  1  1  0  0  1
. x . x .      |    4 |   0    2    2    0 |   *   *   *   * 960   *   *   *   * |   0   1   0   0   0   0   1  0   1  0 |  1  0  1  0  1
. x . . x      |    4 |   0    2    0    2 |   *   *   *   *   * 960   *   *   * |   0   0   1   0   0   0   0  1   1  0 |  0  1  1  0  1
. . o3x .      |    3 |   0    0    3    0 |   *   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1  0   0  1 |  1  0  0  1  1
. . o . x4/3*c |    4 |   0    0    0    4 |   *   *   *   *   *   *   * 480   * |   0   0   0   0   1   0   0  1   0  1 |  0  1  0  1  1
. . . x4x      |    8 |   0    0    4    4 |   *   *   *   *   *   *   *   * 480 |   0   0   0   0   0   1   0  0   1  1 |  0  0  1  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x3x3o . .         12 |   6   12    0    0 |   4   0   0   4   0   0   0   0   0 | 160   *   *   *   *   *   *  *   *  * |  1  1  0  0  0
x3x . x .         12 |   6    6    6    0 |   2   3   0   0   3   0   0   0   0 |   * 320   *   *   *   *   *  *   *  * |  1  0  1  0  0
x3x . . x         12 |   6    6    0    6 |   2   0   3   0   0   3   0   0   0 |   *   * 320   *   *   *   *  *   *  * |  0  1  1  0  0
x . o3x .          6 |   3    0    6    0 |   0   3   0   0   0   0   2   0   0 |   *   *   * 320   *   *   *  *   *  * |  1  0  0  1  0
x . o . x4/3*c     8 |   4    0    0    8 |   0   0   4   0   0   0   0   2   0 |   *   *   *   * 240   *   *  *   *  * |  0  1  0  1  0
x . . x4x         16 |   8    0    8    8 |   0   4   4   0   0   0   0   0   2 |   *   *   *   *   * 240   *  *   *  * |  0  0  1  1  0
. x3o3x .         12 |   0   12   12    0 |   0   0   0   4   6   0   4   0   0 |   *   *   *   *   *   * 160  *   *  * |  1  0  0  0  1
. x3o . x4/3*c    24 |   0   24    0   24 |   0   0   0   8   0  12   0   6   0 |   *   *   *   *   *   *   * 80   *  * |  0  1  0  0  1
. x . x4x         16 |   0    8    8    8 |   0   0   0   0   4   4   0   0   2 |   *   *   *   *   *   *   *  * 240  * |  0  0  1  0  1
. . o3x4x4/3*c    24 |   0    0   24   24 |   0   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *   *  *   * 80 |  0  0  0  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x3x3o3x .         60 |  30   60   60    0 |  20  30   0  20  30   0  20   0   0 |   5  10   0  10   0   0   5  0   0  0 | 32  *  *  *  *
x3x3o . x4/3*c   192 |  96  192    0  192 |  64   0  96  64   0  96   0  48   0 |  16   0  32   0  24   0   0  8   0  0 |  * 10  *  *  *
x3x . x4x         48 |  24   24   24   24 |   8  12  12   0  12  12   0   0   6 |   0   4   4   0   0   3   0  0   3  0 |  *  * 80  *  *
x . o3x4x4/3*c    48 |  24    0   48   48 |   0  24  24   0   0   0  16  12  12 |   0   0   0   8   6   6   0  0   0  2 |  *  *  * 40  *
. x3o3x4x4/3*c   192 |   0  192  192  192 |   0   0   0  64  96  96  64  48  48 |   0   0   0   0   0   0  16  8  24  8 |  *  *  *  * 10

© 2004-2025
top of page