Acronym | gibacadint |
Name | great biprismatocellidispenteractitriacontaditeron |
Circumradius | sqrt[17-4 sqrt(2)]/2 = 1.683979 |
Colonel of regiment | gidacadint |
Face vector | 1920, 6720, 6720, 2160, 172 |
Confer |
|
External links |
![]() |
As abstract polyteron gibacadint is isomorph to sibacadint, thereby replacing octagons by octagrams, resp. op by stop, querco by sirco, and socco by gocco resp. paqrit by prit, hodip by histodip, soccope by goccope, and gikviphado by skiviphado. – As such gibacadint is a lieutenant.
Incidence matrix according to Dynkin symbol
x3x3o3x4x4*c . . . . . | 1920 | 1 2 2 2 | 2 2 2 1 2 2 1 1 2 | 1 2 2 1 1 2 1 1 2 1 | 1 1 2 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x . . . . | 2 | 960 * * * | 2 2 2 0 0 0 0 0 0 | 1 2 2 1 1 2 0 0 0 0 | 1 1 2 1 0 . x . . . | 2 | * 1920 * * | 1 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . . x . | 2 | * * 1920 * | 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * 1920 | 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 0 2 0 | * 960 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * 960 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3o . . | 3 | 0 3 0 0 | * * * 640 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 2 0 | * * * * 960 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 2 | * * * * * 960 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . o3x . | 3 | 0 0 3 0 | * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . o . x4/3*c | 4 | 0 0 0 4 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 4 4 | * * * * * * * * 480 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 6 0 | 2 3 0 0 3 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 0 0 | * * 320 * * * * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . o . x4/3*c ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 0 0 2 | * * * * * 240 * * * * | 0 0 1 1 0 . x3o3x . ♦ 12 | 0 12 12 0 | 0 0 0 4 6 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . x3o . x4/3*c ♦ 24 | 0 24 0 24 | 0 0 0 8 0 12 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . x . x4x ♦ 16 | 0 8 8 8 | 0 0 0 0 4 4 0 0 2 | * * * * * * * * 240 * | 0 0 1 0 1 . . o3x4x4/3*c ♦ 24 | 0 0 24 24 | 0 0 0 0 0 0 8 6 6 | * * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3o3x . ♦ 60 | 30 60 60 0 | 20 30 0 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3x3o . x4/3*c ♦ 192 | 96 192 0 192 | 64 0 96 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 0 | * 10 * * * x3x . x4x ♦ 48 | 24 24 24 24 | 8 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 80 * * x . o3x4x4/3*c ♦ 48 | 24 0 48 48 | 0 24 24 0 0 0 16 12 12 | 0 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3o3x4x4/3*c ♦ 192 | 0 192 192 192 | 0 0 0 64 96 96 64 48 48 | 0 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2025 | top of page |