Acronym | gibacadint |
Name | great biprismatocellidispenteractitriacontaditeron |
Circumradius | sqrt[17-4 sqrt(2)]/2 = 1.683979 |
Coordinates | (1+sqrt(2), sqrt(2)-1, 2 sqrt(2)-1, 1, 1)/2 & all permutations, all changes of sign |
Colonel of regiment | gidacadint |
Face vector | 1920, 6720, 6720, 2160, 172 |
Confer |
|
External links |
![]() |
As abstract polyteron gibacadint is isomorph to sibacadint, thereby replacing octagons by octagrams, resp. op by stop, querco by sirco, and socco by gocco resp. paqrit by prit, hodip by histodip, soccope by goccope, and gikviphado by skiviphado. – As such gibacadint is a lieutenant.
Incidence matrix according to Dynkin symbol
3 3 3 x---o---x---x 4 \ / 4/3 x
x3x3o3x4x4/3*c . . . . . | 1920 | 1 2 2 2 | 2 2 2 1 2 2 1 1 2 | 1 2 2 1 1 2 1 1 2 1 | 1 1 2 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x . . . . | 2 | 960 * * * | 2 2 2 0 0 0 0 0 0 | 1 2 2 1 1 2 0 0 0 0 | 1 1 2 1 0 . x . . . | 2 | * 1920 * * | 1 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . . x . | 2 | * * 1920 * | 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * 1920 | 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 0 2 0 | * 960 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * 960 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3o . . | 3 | 0 3 0 0 | * * * 640 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 2 0 | * * * * 960 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 2 | * * * * * 960 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . o3x . | 3 | 0 0 3 0 | * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . o . x4/3*c | 4 | 0 0 0 4 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 4 4 | * * * * * * * * 480 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 6 0 | 2 3 0 0 3 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 0 0 | * * 320 * * * * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . o . x4/3*c ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 0 0 2 | * * * * * 240 * * * * | 0 0 1 1 0 . x3o3x . ♦ 12 | 0 12 12 0 | 0 0 0 4 6 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . x3o . x4/3*c ♦ 24 | 0 24 0 24 | 0 0 0 8 0 12 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . x . x4x ♦ 16 | 0 8 8 8 | 0 0 0 0 4 4 0 0 2 | * * * * * * * * 240 * | 0 0 1 0 1 . . o3x4x4/3*c ♦ 24 | 0 0 24 24 | 0 0 0 0 0 0 8 6 6 | * * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3o3x . ♦ 60 | 30 60 60 0 | 20 30 0 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3x3o . x4/3*c ♦ 192 | 96 192 0 192 | 64 0 96 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 0 | * 10 * * * x3x . x4x ♦ 48 | 24 24 24 24 | 8 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 80 * * x . o3x4x4/3*c ♦ 48 | 24 0 48 48 | 0 24 24 0 0 0 16 12 12 | 0 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3o3x4x4/3*c ♦ 192 | 0 192 192 192 | 0 0 0 64 96 96 64 48 48 | 0 0 0 0 0 0 16 8 24 8 | * * * * 10
3/2 3/2 3 x---o---x---x 4 \ / 4 x
x3x3/2o3/2x4x4*c . . . . . | 1920 | 1 2 2 2 | 2 2 2 1 2 2 1 1 2 | 1 2 2 1 1 2 1 1 2 1 | 1 1 2 1 1 -----------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x . . . . | 2 | 960 * * * | 2 2 2 0 0 0 0 0 0 | 1 2 2 1 1 2 0 0 0 0 | 1 1 2 1 0 . x . . . | 2 | * 1920 * * | 1 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . . x . | 2 | * * 1920 * | 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * 1920 | 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 -----------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 0 2 0 | * 960 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * 960 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3/2o . . | 3 | 0 3 0 0 | * * * 640 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 2 0 | * * * * 960 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 2 | * * * * * 960 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . o3/2x . | 3 | 0 0 3 0 | * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . o . x4*c | 4 | 0 0 0 4 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 4 4 | * * * * * * * * 480 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 -----------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3/2o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 6 0 | 2 3 0 0 3 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 0 0 | * * 320 * * * * * * * | 0 1 1 0 0 x . o3/2x . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . o . x4*c ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 0 0 2 | * * * * * 240 * * * * | 0 0 1 1 0 . x3/2o3/2x . ♦ 12 | 0 12 12 0 | 0 0 0 4 6 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . x3/2o . x4*c ♦ 24 | 0 24 0 24 | 0 0 0 8 0 12 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . x . x4x ♦ 16 | 0 8 8 8 | 0 0 0 0 4 4 0 0 2 | * * * * * * * * 240 * | 0 0 1 0 1 . . o3/2x4x4*c ♦ 24 | 0 0 24 24 | 0 0 0 0 0 0 8 6 6 | * * * * * * * * * 80 | 0 0 0 1 1 -----------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3/2o3/2x . ♦ 60 | 30 60 60 0 | 20 30 0 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3x3/2o . x4*c ♦ 192 | 96 192 0 192 | 64 0 96 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 0 | * 10 * * * x3x . x4x ♦ 48 | 24 24 24 24 | 8 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 80 * * x . o3/2x4x4*c ♦ 48 | 24 0 48 48 | 0 24 24 0 0 0 16 12 12 | 0 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3/2o3/2x4x4*c ♦ 192 | 0 192 192 192 | 0 0 0 64 96 96 64 48 48 | 0 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2025 | top of page |