Acronym | sibacadint | ||||||||||||||||||||||||||||||
Name | small biprismatocellidispenteractitriacontaditeron | ||||||||||||||||||||||||||||||
Circumradius | sqrt[17+4 sqrt(2)]/2 = 2.379961 | ||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||||||||||||||
Face vector | 1920, 6720, 6720, 2160, 172 | ||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||
External links |
![]() |
As abstract polyteron sibacadint is isomorph to gibacadint, thereby replacing octagrams by octagons, resp. stop by op, sirco by querco, and gocco by socco resp. prit by paqrit, histodip by hodip, goccope by soccope, and skiviphado by gikviphado.
Incidence matrix according to Dynkin symbol
x3x3o3x4/3x4*c . . . . . | 1920 | 1 2 2 2 | 2 2 2 1 2 2 1 1 2 | 1 2 2 1 1 2 1 1 2 1 | 1 1 2 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x . . . . | 2 | 960 * * * | 2 2 2 0 0 0 0 0 0 | 1 2 2 1 1 2 0 0 0 0 | 1 1 2 1 0 . x . . . | 2 | * 1920 * * | 1 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . . x . | 2 | * * 1920 * | 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * 1920 | 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . . x . | 4 | 2 0 2 0 | * 960 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * 960 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3o . . | 3 | 0 3 0 0 | * * * 640 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 2 0 | * * * * 960 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 2 | * * * * * 960 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . o3x . | 3 | 0 0 3 0 | * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . o . x4*c | 4 | 0 0 0 4 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4/3x | 8 | 0 0 4 4 | * * * * * * * * 480 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3o . . ♦ 12 | 6 12 0 0 | 4 0 0 4 0 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 6 0 | 2 3 0 0 3 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 6 | 2 0 3 0 0 3 0 0 0 | * * 320 * * * * * * * | 0 1 1 0 0 x . o3x . ♦ 6 | 3 0 6 0 | 0 3 0 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . o . x4*c ♦ 8 | 4 0 0 8 | 0 0 4 0 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x4/3x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 0 0 0 2 | * * * * * 240 * * * * | 0 0 1 1 0 . x3o3x . ♦ 12 | 0 12 12 0 | 0 0 0 4 6 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . x3o . x4*c ♦ 24 | 0 24 0 24 | 0 0 0 8 0 12 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . x . x4/3x ♦ 16 | 0 8 8 8 | 0 0 0 0 4 4 0 0 2 | * * * * * * * * 240 * | 0 0 1 0 1 . . o3x4/3x4*c ♦ 24 | 0 0 24 24 | 0 0 0 0 0 0 8 6 6 | * * * * * * * * * 80 | 0 0 0 1 1 ---------------+------+--------------------+-------------------------------------+---------------------------------------+--------------- x3x3o3x . ♦ 60 | 30 60 60 0 | 20 30 0 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3x3o . x4*c ♦ 192 | 96 192 0 192 | 64 0 96 64 0 96 0 48 0 | 16 0 32 0 24 0 0 8 0 0 | * 10 * * * x3x . x4/3x ♦ 48 | 24 24 24 24 | 8 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 80 * * x . o3x4/3x4*c ♦ 48 | 24 0 48 48 | 0 24 24 0 0 0 16 12 12 | 0 0 0 8 6 6 0 0 0 2 | * * * 40 * . x3o3x4/3x4*c ♦ 192 | 0 192 192 192 | 0 0 0 64 96 96 64 48 48 | 0 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2025 | top of page |