Acronym sibacadint
Name small biprismatocellidispenteractitriacontaditeron
Circumradius sqrt[17+4 sqrt(2)]/2 = 2.379961
Colonel of regiment (is itself locally convex – uniform polyteral members:
by facets: gikviphado gircope goccope histodip prip prit quercope sichado skiviphado
sidacadint 10400032040100
sibacadint 00408032100010
& others)
Face vector 1920, 6720, 6720, 2160, 172
Confer
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki

As abstract polyteron sibacadint is isomorph to gibacadint, thereby replacing octagrams by octagons, resp. stop by op, sirco by querco, and gocco by socco resp. prit by paqrit, histodip by hodip, goccope by soccope, and skiviphado by gikviphado.


Incidence matrix according to Dynkin symbol

x3x3o3x4/3x4*c

. . . .   .    | 1920 |   1    2    2    2 |   2   2   2   1   2   2   1   1   2 |   1   2   2   1   1   2   1  1   2  1 |  1  1  2  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x . . .   .    |    2 | 960    *    *    * |   2   2   2   0   0   0   0   0   0 |   1   2   2   1   1   2   0  0   0  0 |  1  1  2  1  0
. x . .   .    |    2 |   * 1920    *    * |   1   0   0   1   1   1   0   0   0 |   1   1   1   0   0   0   1  1   1  0 |  1  1  1  0  1
. . . x   .    |    2 |   *    * 1920    * |   0   1   0   0   1   0   1   0   1 |   0   1   0   1   0   1   1  0   1  1 |  1  0  1  1  1
. . . .   x    |    2 |   *    *    * 1920 |   0   0   1   0   0   1   0   1   1 |   0   0   1   0   1   1   0  1   1  1 |  0  1  1  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x3x . .   .    |    6 |   3    3    0    0 | 640   *   *   *   *   *   *   *   * |   1   1   1   0   0   0   0  0   0  0 |  1  1  1  0  0
x . . x   .    |    4 |   2    0    2    0 |   * 960   *   *   *   *   *   *   * |   0   1   0   1   0   1   0  0   0  0 |  1  0  1  1  0
x . . .   x    |    4 |   2    0    0    2 |   *   * 960   *   *   *   *   *   * |   0   0   1   0   1   1   0  0   0  0 |  0  1  1  1  0
. x3o .   .    |    3 |   0    3    0    0 |   *   *   * 640   *   *   *   *   * |   1   0   0   0   0   0   1  1   0  0 |  1  1  0  0  1
. x . x   .    |    4 |   0    2    2    0 |   *   *   *   * 960   *   *   *   * |   0   1   0   0   0   0   1  0   1  0 |  1  0  1  0  1
. x . .   x    |    4 |   0    2    0    2 |   *   *   *   *   * 960   *   *   * |   0   0   1   0   0   0   0  1   1  0 |  0  1  1  0  1
. . o3x   .    |    3 |   0    0    3    0 |   *   *   *   *   *   * 640   *   * |   0   0   0   1   0   0   1  0   0  1 |  1  0  0  1  1
. . o .   x4*c |    4 |   0    0    0    4 |   *   *   *   *   *   *   * 480   * |   0   0   0   0   1   0   0  1   0  1 |  0  1  0  1  1
. . . x4/3x    |    8 |   0    0    4    4 |   *   *   *   *   *   *   *   * 480 |   0   0   0   0   0   1   0  0   1  1 |  0  0  1  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x3x3o .   .       12 |   6   12    0    0 |   4   0   0   4   0   0   0   0   0 | 160   *   *   *   *   *   *  *   *  * |  1  1  0  0  0
x3x . x   .       12 |   6    6    6    0 |   2   3   0   0   3   0   0   0   0 |   * 320   *   *   *   *   *  *   *  * |  1  0  1  0  0
x3x . .   x       12 |   6    6    0    6 |   2   0   3   0   0   3   0   0   0 |   *   * 320   *   *   *   *  *   *  * |  0  1  1  0  0
x . o3x   .        6 |   3    0    6    0 |   0   3   0   0   0   0   2   0   0 |   *   *   * 320   *   *   *  *   *  * |  1  0  0  1  0
x . o .   x4*c     8 |   4    0    0    8 |   0   0   4   0   0   0   0   2   0 |   *   *   *   * 240   *   *  *   *  * |  0  1  0  1  0
x . . x4/3x       16 |   8    0    8    8 |   0   4   4   0   0   0   0   0   2 |   *   *   *   *   * 240   *  *   *  * |  0  0  1  1  0
. x3o3x   .       12 |   0   12   12    0 |   0   0   0   4   6   0   4   0   0 |   *   *   *   *   *   * 160  *   *  * |  1  0  0  0  1
. x3o .   x4*c    24 |   0   24    0   24 |   0   0   0   8   0  12   0   6   0 |   *   *   *   *   *   *   * 80   *  * |  0  1  0  0  1
. x . x4/3x       16 |   0    8    8    8 |   0   0   0   0   4   4   0   0   2 |   *   *   *   *   *   *   *  * 240  * |  0  0  1  0  1
. . o3x4/3x4*c    24 |   0    0   24   24 |   0   0   0   0   0   0   8   6   6 |   *   *   *   *   *   *   *  *   * 80 |  0  0  0  1  1
---------------+------+--------------------+-------------------------------------+---------------------------------------+---------------
x3x3o3x   .       60 |  30   60   60    0 |  20  30   0  20  30   0  20   0   0 |   5  10   0  10   0   0   5  0   0  0 | 32  *  *  *  *
x3x3o .   x4*c   192 |  96  192    0  192 |  64   0  96  64   0  96   0  48   0 |  16   0  32   0  24   0   0  8   0  0 |  * 10  *  *  *
x3x . x4/3x       48 |  24   24   24   24 |   8  12  12   0  12  12   0   0   6 |   0   4   4   0   0   3   0  0   3  0 |  *  * 80  *  *
x . o3x4/3x4*c    48 |  24    0   48   48 |   0  24  24   0   0   0  16  12  12 |   0   0   0   8   6   6   0  0   0  2 |  *  *  * 40  *
. x3o3x4/3x4*c   192 |   0  192  192  192 |   0   0   0  64  96  96  64  48  48 |   0   0   0   0   0   0  16  8  24  8 |  *  *  *  * 10

© 2004-2025
top of page